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Dopamine D1 receptor density in 
the mPFC responds to cognitive 
demands and receptor turnover 
contributes to general cognitive 
ability in mice
Christopher Wass, Bruno Sauce, Alessandro Pizzo & Louis D. Matzel

In both humans and mice, performance on tests of intelligence or general cognitive ability (GCA) is 
related to dopamine D1 receptor-mediated activity in the prelimbic cortex, and levels of DRD1 mRNA 
predict the GCA of mice. Here we assessed the turnover rate of D1 receptors as well as the expression 
level of the D1 chaperone protein (DRiP78) in the medial PPC (mPFC) of mice to determine whether 
rate of receptor turnover was associated with variations in the GCA of genetically heterogeneous 
mice. Following assessment of GCA (aggregate performance on four diverse learning tests) mice were 
administered an irreversible dopamine receptor antagonist (EEDQ), after which the density of new D1 
receptors were quantified. GCA was positively correlated with both the rate of D1 receptor recovery and 
levels of DRiP78. Additionally, the density of D1 receptors was observed to increase within 60 min (or 
less) in response to intense demands on working memory, suggesting that a pool of immature receptors 
was available to accommodate high cognitive loads. These results provide evidence that innate general 
cognitive abilities are related to D1 receptor turnover rates in the prefrontal cortex, and that an 
intracellular pool of immature D1 receptors are available to accommodate cognitive demands.

Among humans, 40–50% of the variance of individuals’ performance across diverse cognitive tasks can be 
accounted for by a single “general” influence1,2. A similar general cognitive factor accounts for 30–40% of the 
variance in the performance of individual mice across batteries of 6–9 cognitive tasks3–6. Although variations in 
intelligence are likely to reflect multiple influences7, it is well established (in both mice and humans) that working 
memory capacity plays a central role in determining these variations8–11.

It has been reported that at least nine genes (of 25,000 screened) are up-regulated in the prefrontal cortex 
(PFC) of mice that express high general cognitive abilities (GCA), and three of those genes (Drd1a, Darpp-32, 
and Rgs9) comprise a cluster involved in dopaminergic signaling12. Relatedly, in humans the dorsolateral PFC 
(dlPFC) is engaged during working memory-based tasks and is differentially activated by cognitive demands in 
persons of high and low intelligence13,14. Furthermore, D1 receptors in the PFC are a target for working memory 
training in both humans15–17 and mice18. Lastly, mice with high GCA exhibit increased neuronal activation in the 
mPFC in response to D1 agonists18. In combination, these results suggest that general cognitive performance, 
working memory, and dopamine signaling in the PFC are related, and comprise a system that contributes to 
variations in intelligence19–21.

Although the Drd1a gene is upregulated and the responsivity of D1 receptors is elevated in animals that 
express high GCA, previous work has not detected a corresponding increase in membrane-bound D1 protein in 
the PFC18, suggesting that the number of mature D1 receptors does not contribute to variations in GCA. Rate of 
protein turnover, variations in chaperone proteins, and gene silencing are regulatory mechanisms that modulate 
the synthesis and trafficking of newly synthesized receptors to the plasma membrane22. Synthesis of the D1 recep-
tor begins in the endoplasmic reticulum (ER). Once folded, the receptor is trafficked to the Golgi apparatus and 
then the trans-Golgi network by chaperone proteins, undergoes glycosylation, and can then be inserted in the 
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plasma membrane. Upon ligand binding, the receptor undergoes degradation or is recycled back to the plasma 
membrane23. The balance of these cascades determines the level of receptor expression at the membrane. Since 
newly synthesized receptors are more responsive to transmitter binding, these regulatory mechanisms can influ-
ence the cell’s response to transmitter binding independent of receptor density24.

The dopamine receptor interacting protein, DRiP78, is a ubiquitous regulator of the export of immature 
receptors from the ER to the Golgi complex and their subsequent trafficking to the plasma membrane25, and 
elevated levels of DRiP78 promote sequestration of immature D1 receptors in the ER25. It is plausible that under 
cognitive resting conditions (when an increased number of D1 receptors are not needed), DRiP78 maintains an 
intracellular pool of immature receptors that await transport on an as-needed basis (e.g., in response to cognitive 
demands). Relatedly, variations in the rate of protein turnover could contribute to the efficacy of D1 signaling, as 
newly inserted receptors increase the cell’s response to dopamine24. It is plausible that animals expressing high 
GCAs have an increased rate of receptor turnover which would re-sensitize the cell at a faster rate, requiring an 
increased rate of receptor synthesis (accommodated by the increase in Drd1A mRNA).

Here (in Experiment 1) we test the possibility that under cognitive resting conditions, animals exhibiting high 
GCA express an increased rate of receptor turnover and elevated levels of DRiP78 (indicative of a larger intracel-
lular pool of receptors awaiting recruitment to the plasma membrane). Rate of turnover of the D1 receptor was 
assessed after administration of N-ethoxylcarbonrl-2-ethoxy-1,2-dihydroquinoline (EEDQ). EEDQ induces a 
dose-dependent depletion (through irreversible non-competitive binding) of dopamine D1 and D2 receptors 
(with markedly lower affinity for other monoamine receptors)26–28. A specific antibody for D1 receptors was then 
used to monitor the rate of recovery of new D1 receptors. This strategy has been widely used to assess the regional 
and age-dependent differences in the recovery and turnover of DA receptors28–30. In addition (in Experiment 2), 
we assess whether high cognitive demands can promote a rapid increase in the density of mature D1 receptors. 
In both cases, analyses were performed on the medial prefrontal cortexl (mPFC), where prior work has found the 
highest correspondence between D1 receptor activity and general cognitive abilities.

Results
Experiment 1.  Here we assessed the rate of D1 receptor turnover and levels of DRiP78 in the medial PFC 
of mice that had been characterized for GCA. Initially, the mice were characterized for their aggregate cognitive 
performance across a battery of four learning tasks. A principal components analysis was then applied to the ani-
mals’ performance on these four tasks in order to derive each individual animal’s factor score (a measure of each 
animal’s aggregate, or general, learning performance). Following characterization of all mice’s general cognitive 
abilities, they underwent a 14 day “rest” period to allow them to reach a state of cognitive “rest”. Subsequently, 
each mouse was administered the irreversible dopamine D1 receptor antagonist N-Ethoxylcarbonrl-2-ethozy-
1,2-dihydroquinoline (EEDQ). Receptors present in the plasma membrane after the injection of EEDQ would be 
indicative of newly inserted receptors. After injection of EEDQ, animals were sacrificed at three time points (24, 
72, and 288 hours), and the density of D1 receptors as well as DRiP78 levels were determined.

A Pearson’s product-moment correlation matrix was created from the mice’s rate of acquisition on all learning 
tests (Table 1), which revealed a positive manifold, i.e., all correlations were consistently positive (a result that 
suggests a common, i.e., general, source of variance). The Pearson’s correlation matrix was then subjected to a 
principal components analysis. All tasks loaded consistently and positively on a primary factor. This factor had 
an eigenvalue of 1.24, and accounted for 31% of the variance in performance across all tasks (Table 2), again sug-
gesting a single general influence on the performance of mice on all learning tasks. Based on this primary factor, 
we derived a factor score for each individual mouse which served as a measure of each mouse’s general cognitive 
ability. Factor scores ranged from −1.65 to +2.7, where higher values reflect higher GCA. The factor scores were 
then used to construct three groups of animals that represent the top third, middle third, and bottom third of 

LM PA WM OD

Lashley III Maze (LM) 1.00 0.5 0.32 0.15

Passive Avoidance (PA) 0.5 1.00 0.21 0.08

Water Maze (WM) 0.32 0.21 1.00 0.12

Odor Discrimination (OD) 0.15 0.08 0.12 1.00

Table 1.  Correlation matrix for 98 animals from Experiment 1.

General Cognitive Ability

Lashley III Maze 0.78

Passive Avoidance 0.63

Spatial Water Maze 0.45

Odor Discrimination 0.21

    eigenvalue 1.24

    Variance Explained 31%

Table 2.  Unrotated Principal components analysis for 98 animals from Experiment 1.
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the distribution of general cognitive abilities. Mice from the middle third of the distribution would receive no 
injection of EEDQ, and thus could serve as a baseline against which to assess differences in D1 protein or DRiP78 
levels.

The performance of the high (n = 29 of a total of 98 animals tested) and low (n = 28) GCA animals on each of 
the learning tasks is illustrated in Fig. 1, and ANOVA was used to compare the performance of these two groups 
on each task. On all tasks, mice classified as expressing low GCA exhibited a slower rate of learning, with signif-
icant differences in the Lashley III maze, F(1,55) = 5.28, P < 0.001 (See Fig. 1A), the odor discrimination task, 
F(1,55) = 7.23, p < 0.01 (See Fig. 1B), the spatial water maze, F(1,55) = 9.22, p < 0.01 (See Fig. 1C), and passive 
avoidance, F(1,55) = 12.41, P < 0.001 (See Fig. 1D).

After completion of behavioral testing we assessed whether the rate of D1 receptor turnover and levels of the 
ER chaperone protein DRiP78 were related to animals’ general cognitive performance. Two weeks following the 
completion of the learning battery, the animals that were assessed for general cognitive abilities were subdivided 
into three groups of highest (n = 29), middle (n = 23), and lowest (n = 28) GCA. The 23 animals closest to the 
center of the distribution were used as a vehicle-treated control group in order to derive a baseline measurement 
of DRiP78 and D1 receptors. The highest and lowest GCA animals (ns = 29 and 28, respectively) were adminis-
tered an injection of the irreversible dopamine antagonist EEDQ, and were sacrificed at one of three independent 
time points, 24, 72, and 288 hours (1, 3, and 12 days) after the injection. Since EEDQ is an irreversible receptor 
antagonist, D1 receptors detected at 24, 72, and 288 hours would be indicative of receptors synthesized after 
EEDQ injection. Thus, the number of receptors at these post-injection time points would provide an estimate 
of rate of receptor turnover/recovery. Levels of D1 receptors and DRiP78 were then quantified using enzyme 
linked immunosorbent assays. It is noted that the antibody used here to quantify D1 protein binds to the protein’s 
C-terminus, a binding site that is typically occupied by DRiP78 in sub-membrane immature receptors. Thus 
immature receptors awaiting transport to the membrane are undetectable by this antibody.

Figure 1.  Cognitive performance of high and low GCA animals. Based on a principal component analysis of 
all learning data, 98 animals were classified according to their aggregate performance (general cognitive ability; 
GCA) across four learning tasks. The animals were then segregated into the top, middle, and bottom thirds 
(high, intermediate, or low) GCA. In all panels of Fig. 1, the mean performance of the high (n = 29) and low 
(n = 28) GCA animals is illustrated on each of the learning tasks. High GCA animals outperformed low GCA 
animals on each of the four tasks: Lashley III Maze [Panel A], odor-guided discrimination [Panel B], Morris 
Water Maze [Panel C], and passive avoidance [Panel D]). Brackets indicate standard error of the mean.
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Figure 2.  Recovery rate of D1 receptors as a function of GCA. Animals from the high and low GCA samples (see 
Fig. 1) were administered EEDQ (8 mg/kg), which irreversibly binds the D1 receptor. Receptors that can be detected 
after EEDQ injection are indicative of newly available receptors. Control animals received vehicle injections and 
served as a baseline from which to normalize protein levels. All animals were then sacrificed 24 hours, 72 hours, or 
288 hours (12 days) after the injection of EEDQ. D1 receptors and DRiP78 in the mPFC were estimated using a DRD1 
ELISA kit and DRiP78 ELISA kit. Panel A: 24 hours after EEDQ administration, D1 receptor levels were substantially 
reduced, and no relationship was observed between D1 levels and animal’s general cognitive performance. Panel B:  
Partial recovery of D1 receptors was observed 72 hrs after EEDQ, and the the degree of recovery was related to 
animal’s GCA, r (18) = 0.57, p = 0.009, such that high GCA animals expressed a higher density of new D1 receptors. 
Panel C: By 288 hrs after EEDQ administration (when recovery of D1 receptors would have been complete), no 
relationship was observed between D1 levels and GCA. In total, this analysis indicates that under normal resting 
conditions, D1 levels are not related to GCA, while the rate of turnover of the D1 protein is positively related to GCA.
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Correlations between D1 levels and factor scores (indicative of GCA) were computed for all mice (those that 
received EEDQ injections) at each of three time points (24, 72, and 288 hrs) after the administration of EEDQ. 
The D1 levels were normalized relative to those mice that did not receive the EEDQ injection. Figure 2 presents 
the correlation matrixes obtained at each time point. Figure 2A indicates that D1 levels were significantly reduced 
24 hrs after EEDQ (mean 38.6% ± 9.06% of baseline levels), and no correlation was observed between factor 
scores (GCA) and D1 levels, r (17) = −0.09, ns, 95% CI [−0.55, 0.41]. Similarly, no correlation between D1 levels 
and factor scores was observed 288 hrs after EEDQ, a point at which D1 receptors were fully recovered (mean 
99.3% ± 10.8% of baseline levels), r (16) = −0.18, ns, 95% CI [−0.62, 0.35]. However, 72 hrs after EEDQ, a point at 
which D1 receptors were in the process of recovery, a significant relationship between D1 levels and factor scores 
was observed, r (18) = 0.57, p = 0.009, 95% CI [0.14, 0.82]. This latter result is indicative of faster recovery of the 
D1 receptor among mice expressing higher GCA. Furthermore, Fisher r-to-z transformations showed that the 
correlation of D1 levels and factor scores at 72 hrs was significantly higher than the correlations at 24 hrs, z = 1.99, 
p = 0.046, as well as at 288 hrs, z = 2.19, p = 0.028.

The results of the analysis of DRiP78 expression levels are illustrated in Fig. 3. DRiP78 levels were determined 
at 288 hrs, a point at which D1 protein had recovered from the EEDQ injection. As with the analysis of D1 levels, 
DRiP78 were normalized relative to those mice that did not receive the EEDQ injection. As can be seen in Fig. 3, 
DRiP78 levels were strongly related to animals’ factor scores (GCA), r (16) = 0.64, p = 0.004, 95% CI [0.21, 0.86]. 
It is noted that in Fig. 3, two samples appear as outliers, expressing only ~20% of the Drip78 level of controls. If 
these animals are removed from this analysis, the correlation between DRiP78 and factor scores remains high, r 
(14) 14 = 0.58, p = 0.018, 95% CI [0.07, 0.85]. This analysis indicates that DRiP78 levels are elevated in mice that 
express higher GCA, raising the possibility that a larger pool of sequestered D1 receptors is available for insertion 
into the membrane in response to cognitive demands.

Experiment 2.  In this experiment, mice underwent assessment in the learning battery described in 
Experiment 1, after which they were divided into two groups, matching the groups based on animals GCA. One 
group was then exposed to a brief period of intense working memory utilization18,31. The second group of mice 
was allowed an equal amount of time to explore the working memory training apparatus without any explicit 
working memory demands. Two hours after the completion of the working memory or control regimens, the ani-
mals were sacrificed and assessed for the density of mature D1 receptors levels in order to determine whether the 
imposition of a working memory demand elevated D1 protein levels, i.e., would a pool of intracellular D1 recep-
tors (as implied by Experiment 1) be available to meet the demands of intense utilization of working memory.

Figure 3.  DRiP78 levels as a function of GCA. DRiP78 levels in the mPFC were estimated by ELISA. Samples 
were obtained from the same animals represented in Fig. 1 288 hrs after EEDQ administration (a time at which 
D1 levels had completely recovered). DRiP78 levels were positively correlated with animals’ GCA, r(18) = 0.64, 
p = 0.004, suggesting that higher levels of DRiP78 would support an increased number of sequestered immature 
D1 receptors that could be rapidly inserted into the membrane. It is noted that two points in Fig. 3 appear as 
outliers, i.e., two animals with very low GCA also expressed extremely low DRiP78 values. If these two animals 
were removed from the analysis, the correlation between DRiP78 levels and GCA remained intact, r(16) = 0.58, 
p = 0.018.

LM PA WM OD

Lashley III Maze (LM) 1.00 0.35 0.44 0.27

Passive Avoidance (PA) 0.35 1.00 0.07 0.24

Water Maze (WM) 0.44 0.7 1.00 0.03

Odor Discrimination (OD) 0.27 0.24 0.03 1.00

Table 3.  Correlation matrix for 32 animals from Experiment II.
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Prior to working memory training, animals’ performance was once again measured during the acquisi-
tion phase of training on four learning tasks. In order to characterize each animal’s general cognitive abilities, 
a Pearson’s product-moment correlation matrix was created from the learning battery data (Table 3), which 
revealed a positive manifold, i.e., all correlations were consistently positive, suggesting a general influence across 
all learning tasks. The Pearson’s correlation matrix was then subjected to a principal components analysis. A 
primary factor (indicative of general cognitive performance) was extracted by the principal components analysis 
with an eigenvalue of 1.72, which accounted for 43% of the variance (Table 4). Based on this primary factor, we 
derived a factor score for each individual animal which served as a measure of each animal’s general cognitive 
ability. Factor scores ranged from −1.85 to +1.92, where higher values reflect higher GCA.

Once the animals’ factor scores were obtained the animals were divided into two groups (WMT and EXP; see 
below) that were matched based on factor scores, i.e., each group was constructed of animals of similar mean and 
range of general cognitive abilities (mean factor score of Group WMT = 0.07 ± 0.33; mean factor score of Group 
EXP = −0.08, ±0.23).

After the two groups were matched for GCA, one group of animals underwent a procedure intended to tax 
working memory (Group WMT). The second group of animals (Group EXP) was not required to utilize working 
memory, but instead was allowed to explore the working memory test apparatus for the average amount of time 
that each of the subjects from Group WMT was in the apparatus.

A dual-maze procedure was used to promote utilization of working memory. Figure 4 illustrates the perfor-
mance of Group WMT during Phase 5 of training in which the animals performed successively in the black and 
grey mazes each day for four days (making only minimal demands on working memory). Performance during 
this phase of training (averaged across the two mazes, left panel) showed a steady improvement across the four 
days of training. However, when the animals were subsequently required to alternate choices across the two mazes 

General Cognitive Ability

Lashley III Maze 0.85

Passive Avoidance 0.64

Spatial Water Maze 0.57

Odor Discrimination 0.50

    eigenvalue 1.72

    Variance Explained 43%

Table 4.  Unrotated Principal components analysis for 32 animals from Experiment II.

Figure 4.  A Working memory test taxes the cognitive capacity of mice. Animals underwent a procedure that 
was designed to acutely tax working memory capacity. All animals were trained on two 8-arm radial mazes (one 
black, one grey). After reaching asymptotic performance in each maze, the mice were then required to perform 
in the two mazes in succession (performing in two mazes each day for four days). The left panel of Fig. 4 
illustrates (mean ± SEM) the combined performance in the two mazes on each of four trials. When required 
to make these independent choices in the two mazes, animals’ performance was initially poor, then improved 
across the four days of training. Subsequently, animals were required to perform in both mazes, but alternated 
choices across the mazes (i.e., 3 choices in the black maze were followed by 3 choices in the grey maze, and this 
pattern repeated until all food was recovered). This “alternating maze” task has been asserted to tax working 
memory, as the animals must maintain a memory of the choices in each maze while making choices in the 
alternate maze. Since the guidance cues are common to both mazes, this procedure introduces a high level of 
interference and confusion. The right panel of Fig. 3 illustrates (mean ± sem) the performance of the animals 
during two alternating choice trials. Relative to the simpler task of making independent choices in two mazes 
(left panel), alternating choices in the two mazes promoted a severe decrement in performance (i.e., an increase 
in combined errors in the two mazes).
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(acutely taxing working memory), performance was severely degraded (averaged across the two mazes; right 
panel), and no improvement in performance was observed across the two testing days. Thus it can be assumed 
that animals were in a state of high cognitive demand at the completion of the second day of working memory 
implementation.

Two hours after the completion of the second session of working memory training, animals were sacrificed, 
brains were rapidly extracted and a gross extraction of the mPFC was performed. Analysis of the expression level 
of D1 receptors revealed a significantly higher density of D1 protein in animals that had recently engaged in 
working memory implementation relative to those that were in a state of cognitive rest, t(26) = 5.617, p < 0.001 
(See Fig. 5). As suggested by the results of Experiment 1, this result indicates that the D1 receptor can rapidly be 
made available to accommodate cognitive demands.

Discussion
The present set of experiments provides evidence of a positive relationship between the rate of turnover/recovery 
of newly synthesized D1 dopamine receptors in the mPFC and animal’s general cognitive abilities (GCA). For this 
analysis, we circumvented the receptor recycling pathway by utilizing the alkylating agent EEDQ, an irreversible 
dopamine receptor antagonist. By utilizing an irreversible antagonist, each receptor that was bound by the ligand 
ultimately undergoes degradation instead of re-sensitization and re-insertion into to the plasma membrane. Thus 
receptors present after 24, 72, and 288 hours after the EEDQ injection were receptors inserted into the membrane 
after the administration of the antagonist (with the exception of receptors that were not bound by the ligand).

At any given time, there exists in the ER a balance between incompletely-folded proteins that are retained in 
the ER and fully-folded proteins that are trafficked out of the ER for insertion into the plasma membrane. Such 
restricted trafficking provides the cells with a pool of functional receptors that can be called upon immediately by 
relaxing the scrutiny of the quality control system or stabilizing receptor conformation24, and previous work has 
indicated that large reserves of dopamine D1 and D2 receptors are present in the PFC, particularly in young ani-
mals28. In addition to rate of turnover, here we assessed whether an increase in D1 receptor turnover rates in high 
GCA animals could in part be modulated by the ER membrane-associated protein DRiP78. Levels of DRiP78 
have been shown to regulate the dynamic interplay between the number of membrane bound receptors and a 
cell’s receptivity to transmitter binding. DRiP78 regulates the number of membrane bound receptors through 
binding to the receptors carboxyl terminal hydrophobic motif FxxxFxxxF in the ER. The FxxxFxxxF motif of the 
D1 receptor has been shown to function as an ER export signal. Levels of DRiP78 are known to be proportional to 
the number of D1 receptors at the plasma membrane in an inverted U shaped curve fashion, and an optimal level 
of DRiP78 is needed for efficient D1 trafficking25,32.

Higher expression of DRiP78 is associated with an increase in the retention of the D1 receptors in the ER32, 
which can lead to a larger pool of intracellular receptors that could potentially be available to undergo maturation 
during a time of high cognitive demand. The present results show that during a time of cognitive rest, high GCA 
animals express an enhanced expression level of DRiP78. Thus it can be postulated that high GCA animals have 
an intracellular pool of immature receptors at their disposal for times of intense cognitive demands. During times 
of high cognitive loads, DRiP78 could release its tonic hold on the immature receptors in the ER thus allowing 
them to undergo maturation and be inserted into the membrane. With the availability of an intracellular pool 
of immature receptors, the delay between full maturation and plasma membrane binding would be shorter than 
undergoing full synthesis of novel proteins, thus rapidly accommodating cognitive demands.

In humans and mice, innate differences in general cognitive ability as well as differences consequent to work-
ing memory training are associated with increased sensitivity of dopamine D1 receptors in areas of the PFC16,18. 

Figure 5.  Utilization of working memory increases D1 protein levels. Expression level of D1 receptors in the 
prelimbic cortex of animals that were either exposed to an intense working memory task (WMT; described in 
Fig. 4) or simple exposure (EXP) to the training apparatus with no explicit cognitive demands. The brackets 
indicate the range of values in each group, the median is marked by the horizontal line within the box, and the 
box spans the interquartile range of data points. An independent samples t-test revealed a significant difference 
in the expression level of D1 receptors with animals that were imposed to the working memory training 
regimen having an enhanced expression level of D1 receptors in the prelimbic cortex (p < 0.001). This result 
suggests that D1 receptors can be made rapidly available to accommodate cognitive demands.
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In the present analysis, we determined that this increase in sensitivity is associated with an increase in the density 
of D1 receptors. Newly synthesized receptors are generally more sensitive to ligand binding33, and receptor use is 
known to facilitate the rate of recycling34,35. Thus not only is an increased rate of turnover likely to account for the 
observed increased sensitivity of the D1 receptor that is associated with higher general cognitive performance, 
working memory training (which stimulates these receptors) is likely to similarly increase their rate of turnover 
and/or density. As rate of turnover is influenced by use and critically modulates receptor sensitivity, this modula-
tion of rate may serve as the point of convergence between genetic regulation of GCA and the impact of cognitive 
experience (e.g., working memory training) on general cognitive performance.

Since a receptor’s sensitivity is in part determined by the time since its synthesis (for review, see ref.24), an 
increase in the rate of turnover of the D1 receptor may be a mechanism by which its sensitivity is modulated. 
Moreover, while the pool of reserve D1 receptors is known to be high in young animals28, the rate of D1 receptor 
turnover is markedly reduced in aged brains30, and thus rate of turnover may be the common link between recep-
tor sensitivity, innate variations in intelligence, and cognitive aging. This possibility is particularly exciting in light 
of evidence that rate of receptor turnover is use-dependent, and can thus account for the effects on D1 receptor 
sensitivity of working memory training (e.g.36), which can be effective as a means to mitigate cognitive aging37,38.

Prior reports in humans using positron emission topography (PET), magnetic resonance imaging (MRI), 
and post mortem studies have demonstrated that an age-related decline in dopamine D1 binding potential and/
or sensitivity exists between young and aged cohorts39–42. Coinciding with this loss in D1 binding potential is the 
impairment in executive functioning which has been identified as a primary modulator in deficits of working 
memory, cognitive flexibility, and overall general cognitive performance. This phenomenon has been similarly 
characterized in animals43–45, suggesting that across species, aging is associated with a global decrease in the bind-
ing potential of D1 receptors. It would be intriguing in light of the current evidence, taken collectively with past 
studies, to begin examining the effects that prolonged cognitive training regimens would have on the signaling 
capacity of D1 receptors and its effects on age-related cognitive declines.

Materials and Methods
EXPERIMENT 1.  Subjects.  Ninety-eight CD-1 outbred male mice were obtained from Harlan Laboratories 
(Indianapolis, IN). This strain exhibits a high degree of behavioral and genetic variability (comparable to wild 
populations), and thus are well suited for experiments examining individual differences. The mice arrived in 
our laboratory between 70–80 days of age at which time their weights ranged from 25–30 grams. The mice were 
singly housed in clear standard shoe box cages in a temperature and humidity controlled vivarium which was 
maintained on a 12 hour light/dark cycle. In order to minimize any differential stress responses exhibited by the 
animals due to experimenter handling, the animals were removed from their cages and held by an experimenter 
for 90 sec/day, five days per week, for a period of two weeks prior to the start of behavioral testing.

Learning Battery.  To quantify animals’ general cognitive abilities, we evaluated animals’ performance on a bat-
tery of four diverse tasks that impinge on different domains of learning, sensory/motor, and motivational systems. 
All of the animals were tested on the tasks in the following order: Lashley III Maze, water maze, odor-guided 
discrimination, and passive avoidance. Three days of rest intervened between each successive task in the learning 
battery. For tasks utilizing food reinforcers, animals were food deprived 48 hours prior to training by allowing 
only 90 min of access to food per day (delivered within two hours of the end of the light cycle).

Lashley III Maze: The Lashley III maze was constructed of a start box, four connected alleys, and a goal box 
that could contain a food pellet. (For an illustration of the Maze, see ref.5. Efficient performance in the maze 
requires that the animal make five spatial alternations to reach the goal box. Over trials, the number of errors 
(i.e., wrong turns or retracing) committed by an animal typically decrease. The maze was constructed of black 
Plexiglas. Each alley measured 58 × 6 cm, and has 16 cm high walls. A goal box was (20 cm long) located 10 cm 
from the end of the last alley. A 2 cm diameter cup was located near the rear of the goal box, and 45 mg BioServe 
pellet (rodent grain) served as a reinforcer. The floor of the maze was illuminated at 80 Lux. The maze was isolated 
behind white Plexiglas to minimize any extra-maze landmark cues.

Animals were food-deprived and then acclimated and trained on two successive days. To familiarize animals 
with the reinforcer, each animal received three BioServe food pellets in its home cage on the day prior to accli-
mation. On the acclimation day, each mouse was placed for 4 min in each alley of the maze, but the openings 
between the alleys were blocked (with black Plexiglas) so that the animals could not through the maze. Three 
reinforcers were present in the food cup during this acclimation. On the subsequent training day, each animal 
was placed in the start box and allowed to navigate the maze until it reached the goal box and consumed the single 
food reinforcer that was present. After consuming the reinforcer, the animal was returned to its home cage for a 
20 min intertrial interval (ITI). The entire apparatus was cleaned with a mild alcohol solution during the ITI, after 
which, the animal was returned to the start box to begin the next trial. This sequence was repeated for five trials. 
On each trial, errors (a turn in an incorrect direction, including those which result in path retracing) to enter the 
goal box were recorded.

Odor Guided Discrimination: Mice easily learn to use odors to guide their search for food. Here, mice were 
placed in a square field in which food cups were located in three corners and were marked by distinct (e.g., 
almond, lemon, mint). Food was present in each cup, but was only accessible to the mice in the cup marked by 
the odor of mint. Each mouse was placed in the empty corner of the field, and allowed to retrieve the food pellet 
in the cup marked by the mint odor. On each trial, the food cups were located in a new location (corner),, but the 
accessible food was always marked by mint. On successive trials, mice made fewer search errors directed at the 
cups in which food was not available, and near errorless performance is typically observed within 2–4 training 
trials.
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A 60 cm square field was constructed of black Plexiglas and had 30 cm high walls. The field was located in 
a dimly lit (10 fc) room with a high rate of air turnover (3 min volume exchange). Three 4 × 4 × 2.0 cm (l, w, h) 
aluminum food cups were located in three corners of the field. The food reinforcer (30 mg of chocolate-flavored 
puffed rice) was placed in a 1.4 cm deep, 1 cm diameter depression in the center of each cup. The food in two of 
the cups was covered (1.0 cm below the surface of the cup) with a wire mesh so that it was not be accessible to the 
animal, while in the third cup (marked by the mint odor), the food could be retrieved and consumed. A 3 cm long 
cotton-tipped laboratory swab was located between the center and rear corner of each cup.

Prior to each trial, 25 ul of either lemon, almond, or mint odorants (McCormick flavor extracts) were added to 
fresh cotton swabs on each food. The mint odor was always present on the cup that held accessible food. On the 
training day, each mouse received four training trials with three food cups present. On each trial, the mouse was 
placed in the empty corner of the field, and the trial continued until the animal retrieved and consumed the food 
from the cup marked by the mint odor, after which the mouse was left in the chamber for an additional 20 sec. The 
mouse was then returned to its home cage where a 6 min ITI ensued. Trials 2–4 proceeded in the same manner, 
but the locations of the food cups were rearranged, although the accessible food was always marked by the mint 
odor. On each trial, an error was recorded if an animal made contact with, or when its nose crossed a plane par-
allel to the perimeter of an incorrect cup.

Spatial Water Maze: In this task, mice are placed in a round pool of water from which they can escape onto a 
hidden (i.e., submerged) platform. Across trials, the animal’s path to the escape platform becomes more efficient. 
Starting each trial from a new location mitigates egocentric navigation and promotes dependence on spatial 
landmarks. Thus performance in this maze is said to reflect the animals’ representation of their environment as 
a “cognitive map”.

With our procedures, mice exhibit significant reductions in their latency to locate the escape platform within 
3–6 training trials. To promote this rapid acquisition, animals were confined for 6 min in a clear Plexiglas cylin-
der on the submerged platform on the day prior to training, a longer ITI (10 min) was used than is typically (c.f., 
90 sec), and the maze, surround, and water were black and visual cues were comprised of patterns of lights.

A round pool (140 cm diameter, 56 cm deep) was painted black on all surfaces and was filled to within 24 cm 
of the top with water made opaque with nontoxic, water soluble, black paint. An 11 cm diameter black platform 
was hidden in a fixed location 1.5 cm below the water’s surface midway between the perimeter and center of the 
pool. A ceiling-high black curtain surrounded the pool. Five different shapes (landmark cues) were variously 
positioned on the interior of the curtain at heights (relative to water surface) ranging from 24–150 cm. One of the 
cues was constructed of two adjacent 7 W light bulbs. The remaining shapes were comprised of strings of white 
LEDs (at 2.5 cm intervals). These shapes formed an “X” (66 cm arms crossing at angles 40° from the pool surface), 
a vertical “spiral” (80 cm long, 7 cm diameter, 11 cm revolutions), a vertical line (31 cm long) and a horizontal line 
(31 cm long). A video camera was located on the ceiling above the center of the pool (180 cm above the surface of 
the water). These visual cues provided the illumination of the maze (172 Lux at the water surface).

One day prior to training, each animal was placed on the escape platform and confined there for 360 sec. 
Training proceeded on the following two days. Six training trials were administered on Day 1 of training. On each 
trial, the animals were placed in the pool at one of three unique start locations. One starting point was located 
along the outer wall of the pool in the middle of each of the three quadrants other than the one that contained the 
submerged escape platform. The starting location alternated between the three available quadrants on each trial. 
An animal was judged to have escaped from the water when all four of its paws were on the platform, provided 
that the animal remained on the platform for at least 5 sec. Ten min intervened between each trial, during which 
time the animals were held in a warming cage. A 90 second limit on swimming was imposed on each trial. Any 
animal that had not located the escape platform within 90 sec was placed by the experimenter onto the platform, 
and then removed from the pool 10 sec later.

Animals were observed on a remote video monitor, and their performance was recorded for subsequent anal-
ysis. Day 2 of training proceeded as Day 1, although only four trials were administered. Each animal’s path length 
to the platform served as the index of that animal’s performance.

One-Trial Passive Avoidance: Animals will learn to avoid contact with aversive stimuli. “Passive avoidance” 
response is exemplified in step-down avoidance procedures, whereupon stepping off of a platform the animals 
encounters a foot shock, resulting in an increase in the animal’s latency to leave the safe platform. In the present 
procedure, the mouse was exposed to a compound of bright light and loud oscillating noise (rather than shock) 
when it stepped off the platform. This variant of this task has been found to support learning after only a single 
trial.

A dimly lit (20 Lux) chamber was used for training and testing. A circular (“safe”) (10 cm diameter, 8 cm high) 
had walls and floor constructed of white Plexiglas (the floor being comprised of plastic rods (2 mm diameter) 
arranged to form a pattern of 1 cm square grids). The ceiling of this chamber was translucent orange Plexiglas. 
A clear exit door (3 cm square) could slide horizontally to open or close the safe chamber. The bottom of the exit 
door was 4 cm above the floor of another circular chamber (20 cm diameter, 12 cm high). This “unsafe” chamber 
was constructed of clear Plexiglas and had a floor constructed of 4 mm wide aluminum planks arranged to form 
1.5 cm grids oriented at a 45° angle relative to the grid floor in the safe chamber. When an animal stepped from 
the safe chamber onto the floor of the unsafe chamber, a compound aversive stimulus was initiated. This stimulus 
was comprised of a bright white light (550 Lux) and “siren” (Radio Shack sound oscillator, model 273–057; 60 dB 
above the 50 dB background, 2.4–3.7 kHz).

Each mouse was placed on the safe platform behind the closed exit door. After 4 min of confinement, the door 
opened and the latency of the animal to step onto the floor of the lower compartment was recorded. Prior to 
encountering the aversive stimulus, step-down latencies typically range from 6–12 sec. Upon contacting the floor 
of the lower chamber, the aversive stimulus (light + siren) was presented for 3 sec. Upon encountering the aversive 
stimulus, mice reliably retreat into the upper safe chamber, at which time the platform door was closed. The mice 
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were then confined to the safe chamber for another 4 min, after which the door was opened and the latency to 
contact the lower grid floor was again recorded. The ratio of post-training to pre-training step-down latencies was 
calculated for each animal and served as an index of learning. We have previously found that performance after a 
single training trial reflects (on average) sub-asymptotic learning.

Analysis of General Cognitive Abilities of Individual Mice.  As described in previous reports5,46, each animal 
received a performance score for each learning task, and that score represented its rate of acquisition on that task. 
To describe each animal’s general cognitive performance, the performance on each learning task was entered into 
a Pearson’s product-moment correlation matrix. Positive correlations across all comparisons would indicate that 
a common source of variance influenced the performance of animals across all tasks. The Pearson’s correlation 
matrix was then subjected to a principal components analysis, which provides an estimate of the amount of 
variance in aggregate performance that can be accounted for by a general factor. Based on the primary (general) 
factor from this analysis, a factor score was derived for each individual animal. A factor score is analogous to an 
average z-score for each animal’s performance on each learning task, where the z-score for each task is weighted 
according to its loading on the primary factor. These factor scores provide an estimate of each animal’s general 
cognitive ability relative to the other animals in the sample.

Assessing D1 Receptor Turnover Rate.  Two weeks following the completion of the learning battery, three distinct 
(non-adjacent) groups were formed based on their general cognitive performance (i.e., factor scores). To form 
these distinct groups, groups were formed from the top 29, middle 23, and bottom 28 animals from the 98 ani-
mals that contributed factor sores. The nine animals between the middle and high categories and the 9 animals 
between the low and middle categories did not contribute to any further analyses. (These group sizes were chosen 
based on the number of samples that could be loaded on an ELISA plate.) The top and bottom third of animals 
would be administered EEDQ, while the middle third would receive no drug and would serve to establish a nor-
mal baseline from which to compare changes in D1 protein and Drip78 levels. The high (n = 29) and low (n = 28) 
GCA animals were given an intraperitoneal (i.p.) injection of N-ethoxylcarbonrl-2-ethoxy-1,2-dihydroquinoline 
(EEDQ; an irreversible full dopamine antagonist) at a dose of 8 mg/kg, and the animals from the middle of the 
distribution (n = 23) were given an i.p. injection of the vehicle. A dose of 8 mg/kg was chosen because in prelim-
inary experiments it showed high receptor blockade (~70% @ 6 hours post injection) with only a low mortality 
rate (<6%). Control animals (from the middle of the GCA distribution) received comparable injections of saline. 
To determine the rate at which new receptors replaced those that had been irreversibly blocked, the animals were 
sacrificed by rapid decapitation at three different time points after EEDQ injection: 24, 72, and 288 hours. Either 
9 or 10 animals from each group were sacrificed at each time point. (High GCA 24 hours group had 10 animals; 
High GCA 72 hours group had 10 animals; High GCA 288 hours group had 9 animals; Low GCA 24 hours group 
had 9 animals; Low GCA 72 hours group had 10 animals; Low GCA 288 hours group had 9 animals.) The brains 
were rapidly extracted and a gross extraction of the medial prefrontal cortical (mPFC) area was performed. Once 
the mPFC was extracted it was placed into an ice-cold lysis buffer (10 mM Tris-HCL pH 7.4, 1% (v/v) NP-40, 
150 mM NaCl, 5 mM EDTA, 50 mM NaF, 1 mM phenylmethylsulfonyl fluoride; PMSF), containing a protease 
inhibitor cocktail (Cat# 78430, Thermo Scientific). Brain extracts were then purified by sonication, centrifuged at 
15,000 rpm for a period of 10 minutes at 4 °C. The supernatants were then extracted, flash frozen in liquid nitro-
gen, and stored at −80 °C until further use.

In order to quantify the number of D1 receptors in each sample, an enzyme-linked immunosorbent assay was 
performed on a pre-coated anti-drd1 plate (Cat# MBS269095, MyBioSource). This antibody for the D1 receptor 
binds to the receptor’s C-terminus. Since this binding site is typically occupied by DRiP78 in sub-membrane 
immature receptors, those receptors awaiting transport to the membrane are predominantly undetected. Briefly, 
the standards and samples were loaded in duplicates onto the plate and allowed to incubate at 37 °C for 90 min-
utes. Once the incubation time period elapsed the plate was washed three times using the washing solution pro-
vided by the manufacturer. After the completion of the washes a biotinylated Mouse DRD1 antibody was added 
to each well and allowed to incubate at 37 °C for 60 min. The plate was then washed again three times, after which 
an enzyme conjugate was loaded into each well and once again allowed to incubate at 37 °C for a period of 30 min. 
Once this time period elapsed the plate was washed five times and the color reagent supplied by the manufacturer 
was added. The absorbance at 450 nm was measured with a microplate reader (Multiskan MCC, Thermo Fisher) 
in order to determine the level of D1 receptors present in each sample.

Assessing DRiP78 Expression Levels.  DRiP78 expression levels were assessed on the same samples that con-
tributed to the analysis of receptor turnover. In order to quantify the expression level of DRiP78 in each sample; 
an enzyme linked immunosorbent assay was performed on a pre-coated anti-DRiP78 plate (Cat# MBS924030, 
MyBioSource). Briefly, the standards and samples were loaded onto the plate in duplicates and allowed to incu-
bate for two hours at 37 °C. Following the incubation, the standards and samples were removed from the plate and 
the Biotin-antibody was loaded into each well (with no intervening washes) which was then allowed to incubate 
for 60 min at 37 °C. Following the 60 min incubation, a series of five washes using the washing buffer provided 
by the manufacturer was performed. HRP-aviden was then loaded into each well and allowed to incubate for 
one hour at 37 °C. The plate was then washed and the TMB substrate was added to each well and incubated for 
15–30 minutes at 37 °C. The stop solution was then added and the absorbance at 450 nm was measured using a 
microplate reader (Multiskan MCC, Thermo Fisher) in order to determine the levels of DRiP78 in each sample.
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The reported values of D1 protein and DRiP78 are normalized relative to animals that did not receive EEDQ 
injections, i.e., that received vehicle injections, but that had previously been tested in the battery of learning tests. 
Thus reported values of 100% can be considered the baseline.

Experiment 2.  Subjects.  32 genetically heterogeneous CD-1 male mice were obtained from Harlan 
Laboratories (Indianapolis, IN) at 65–80 days and a weight range of 24–29 grams. Housing and maintenance 
were as described in Experiment 1.

Quantifying General Cognitive Abilities.  To characterize their general cognitive abilities, all animals underwent 
testing in the four-task learning battery described in Experiment 1. The procedures for implementing the learning 
battery were identical to Experiment 1 with the exception of the number of training trials. In this experiment all 
animals were trained to an asymptotic level of performance in order to ensure that any differences in the expres-
sion level of D1 receptors was a consequence of the imposition of a working memory training regimen, rather 
than as a consequence of different levels of learning. Animal housing and maintenance conditions were identical 
to that of the first experiment.

Working Memory Taxation.  After completion of testing on the learning battery, animals were segregated into 
two groups that were matched for their GCAs (i.e., they were comprised of animals of similar mean and range 
of general cognitive abilities; see results). One group then received working memory training (working memory 
training; WMT, n = 16), and the second group received an equivalent amount of time in the training apparatus 
without explicit working memory training (exposure; EXP, n = 16). The procedures and apparatus are described 
below, and the rationale for this this task is described in detail elsewhere4,10,11,47. In short, the animals are required 
to alternate choices between two distinct radial arm mazes that share a common set of extra-maze guidance cues. 
This requires that the animals maintain a memory of prior choices under conditions of interference imposed by 
working in two mazes simultaneously.

Two 8-arm radial mazes were constructed of either black or grey Plexiglas. They both consisted of an 18 cm 
diameter central hub surrounded by eight 40 × 5 cm arms with a 0.75 cm lip around the perimeter of each arm. 
Each maze was raised 26 cm above the floor. At the end of each arm was a 1 cm depression in the arm which could 
be used as a food cup. Each food cup had a 1 mm hole at the bottom which led to a cup filled with 84 mg (6 pieces) 
of inaccessible food. This inaccessible food provided a scent of food and mitigated animals’ use of the scent of 
food to find cups in which food was accessible.

In addition to their color, the two mazes were further distinguishable. The black maze had an 18 cm tall clear 
Plexiglas enclosure surrounding its central hub, with each arm accessible through a 5 cm wide and 4 cm tall 
entrance door. The gray maze included no such enclosure around the central hub. The two mazes were placed 
side-by-side in the same testing room and thus shared a set of overlapping extra-maze visual cues (a pattern of 
LED lights as well as architectural features) which the animals could use to guide their navigation within the 
mazes.

At the start of a typical training trial in either the black or grey maze, the animal was placed in the central hub 
of the maze and allowed to navigate freely until it successfully found and consumed the Bio-Serv 14 mg dustless 
pellet located in the food cup at the end of each arm. Mice were judged as choosing an arm when their hind paws 
crossed the initial edge of each arm. Errors were scored when an animal chose an arm from which food had 
already been collected.

Training/testing in these mazes occurred over approximately seven weeks and was conducted in six phases, 
with two days off between each successive phase. In Group WMT, the final phase of testing was intended to make 
strong demands on the animals’ use of working memory. During all training/testing, animals were food deprived 
by providing them with only 90 min/day access to food in their home cages at the end of the light cycle (and thus 
were approximately 16 hours deprived at the start of any training/test session).

Initial training was performed on both groups of animals. All of the animals were trained first in the black 
maze. Initially, animals were acclimated to the maze for two consecutive days (Phase 1). On the first day of accli-
mation, animals were placed on each of the eight arms of the maze for 90 s without access to the central hub (entry 
doors were closed). One piece of food was available in each of food cups at the end of each arm. On the second 
day of acclimation, the animals were placed in the central hub of the black maze, and allowed access to each arm 
individually (by opening a door to one arm at a time). After emergence into the arm, animals were confined to the 
arm for 10 min, and were again allowed to collect a food pellet located in the cup at the end of the arm.

In Phase 2, animals were trained in the black maze, with one trial per day, for five days. Animals started in the 
central hub with all doors open, and allowed to navigate the maze until all eight food pellets were collected. Errors 
were recorded throughout the trial.

In Phase 3, animals were trained in the (gray) maze, one trial per day, for five days. Training proceeded in the 
same manner as in the black maze, but the acclimation phase was omitted (since animals were already acclimated 
to the mechanics of maze navigation).

In Phase 4, training continued for four days as in the prior two phases, but animals alternated between the 
black and gray maze on successive days. They were trained in the black maze on the first and third of four days, 
and on the grey maze on the second and fourth of four days.

In Phase 5, animals performed in both mazes on the same day. They were trained in the black maze early dur-
ing the light cycle (3–4 hrs after lights on), then after a 4 hr ITI, were trained again in the grey maze. This training 
proceeded for four days.

All of the above training sessions were intended to have the animals trained to asymptotic performance on 
both mazes, and to have them performing two trials per day (one trial in each maze). At the end of these five 
phases of training, the animals were prepared for the critical phase (Phase 6) in which working memory would 
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be utilized by Group WMT. In previous reports, we have observed that the working memory task implemented 
here is initially difficult for mice, although they can improve considerably over 12 days of training31. In the present 
experiment, our goal was not to train improvements in working memory, but rather, to determine the effect of 
intense utilization of working memory on D1 receptor protein density. In our prior work, we have observed that 
mice performed poorly on the working memory task through the initial two days of training (i.e., working mem-
ory was severely taxed). Thus in the present study, animals participated in this Phase 6 working memory task (or 
the control procedure) for just two days.

During the two days of working memory implementation, animals in Group WMT (working memory train-
ing) received one test trial per day, during which they alternated their choices in the black and grey mazes. They 
began each trial in the black maze, where they were allowed to make three correct choices (plus any errors). They 
were then be moved by the experimenter into the grey maze where they were allowed to make their first three 
correct choices (plus any errors). They were then returned to the black maze to make their next three correct 
choices (plus any errors), then again to the grey maze to make their next three correct choices (plus any errors). 
This alternation was then repeated for the final two correct choices in the black and grey mazes. Thus by the end of 
a trial, the subjects had obtained all 16 food reinforcers from both mazes (8 in each maze). Again, this procedure 
is thought to heavily tax working memory capacity, since the animals must maintain a memory of choices in one 
maze while subjected to the interference associated with choices in the second maze (where both mazes share 
common extra-maze search cues).

On the two days in which Group WMT performed in the working memory task, Group EXP (exposure) was 
simply placed in the central hub of each maze for the same amount of time and with eight food pellets placed in 
the center of the hub. Under these conditions, the animals could experience the mazes and collect food with no 
requirement for the implementation of working memory.

Assessing D1 Receptor Expression Levels.  Two hours after the final working memory testing session (when ani-
mals will have been in a state of high cognitive demands), their brains were rapidly extracted and a gross extrac-
tion of the mPFC was performed. Quantification of the expression level of D1 receptors was identical to the 
quantification of D1 receptor levels described in Experiment 1, however, in this case, basal protein levels were to 
be determined, so the animals were not treated with a D1 receptor antagonist prior to their sacrifice.

Data availability.  The datasets generated during and/or analyzed during the current study are available from 
the corresponding author on reasonable request.

Use of experimental animals.  This work was approved by the Rutgers University IAUCUC committee 
(Protocol # 98–024) and all experiments were performed in accordance with relevant guidelines and regulations.
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