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Abstract
The striatum has long been associated with cognitive functions, but the mechanisms behind this are still unclear. Here we
tested a new hypothesis that the striatum contributes to executive function (EF) by strengthening cortico-cortical
connections. Striatal connectivity was evaluated by measuring the resting-state functional connectivity between ventral
and dorsal striatum in 570 individuals, aged 3–20 years. Using structural equation modeling, we found that inter-individual
differences in striatal connectivity had an indirect effect (via fronto-parietal functional connectivity) and a direct effect on a
compound EF measure of working memory, inhibition, and set-shifting/flexibility. The effect of fronto-parietal connectivity
on cognition did not depend on age: the influence was as strong in older as younger children. In contrast, striatal
connectivity was closely related to changes in cognitive ability during childhood development, suggesting a specific role of
the striatum in cognitive plasticity. These results support a new principle for striatal functioning, according to which
striatum promotes cognitive development by strengthening of cortico-cortical connectivity.

Key words: development, executive function, Pediatric Imaging, Neurocognition, and Genetics (PING), resting-state fMRI,
structural equation modeling (SEM)

Introduction

The striatum is implicated in motivation (Schultz et al.
1997), implicit learning (Packard and Knowlton 2002; Graybiel
2008), and executive functions (EFs) such as working memory
(WM), inhibitory control, and set-shifting/flexibility (Postle
and D’Esposito 1999; Grahn et al. 2008; McNab and Klingberg
2008). EF is associated with activity predominantly located in

the dorsal striatum (DS) (Grahn et al. 2008), whereas the ventral
striatum (VS) is more related to motivation and anticipation of
rewards (Postle and D’Esposito 1999). Though these associations
have been known for a long time, there is still a need for
models describing the neural mechanisms of how the striatum
supports EF.

Although there are models for striatal involvement in rein-
forcement learning (Montague et al. 1996; Collins and Frank
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2014), and proposed mechanisms underlying updating in WM
(Hazy et al. 2007), it is still unclear how striatum supports a wider
range of cognitive functions, how it relates to cortical networks,
and what is its role in cognitive development. Here, our goal was
to test a new hypothesis, according to which the striatum affects
EF by strengthening cortico-cortical functional connectivity.

Cognitive abilities, as most cortical functions, are not imple-
mented in an isolated, single cortical area, but a network of
areas. The efficiency of such a network depends on the strength
of its connectivity. Importantly, the functional connectivity mea-
sured during task performance is closely related to that dur-
ing rest (Cole et al. 2014), for example, for WM, higher capac-
ity is related to higher synchronicity of frontal and parietal
activity (Palva et al. 2010). Regarding childhood development,
recent evidence shows that gradual slow changes in network
connectivity over the years are linked to changes in EF (see
Luna et al. 2015 for a comprehensive review on this topic).
Functional network organization at early ages undergo develop-
mental modifications toward more specialized networks and a
greater systems-level integration (Luna et al. 2015). For example,
the improvement of WM during childhood over the years is
associated with increased fronto-parietal connectivity during
rest (Fair et al. 2007; Sherman et al. 2014), presumably due to the
strengthening of synaptic connectivity. Similarly, the increase
in WM capacity through training is associated with increased
fronto-parietal connectivity (Kundu et al. 2013), and an increase
in resting-state connectivity (Takeuchi et al. 2010; Jolles et al.
2013; Takeuchi et al. 2013; Astle et al. 2015). Strengthening of
cortico-cortical connectivity is therefore a possible mechanism
behind the improvement of EF.

The connections between separate parts of cortex and stria-
tum usually form parallel loops (Alexander and Crutcher 1990).
Interestingly, however, there is also evidence for converging pro-
jections, where different cortical regions project to overlapping
parts of the striatum, identified with tract tracing in macaque
monkeys (Choi et al. 2017), as well as functional (Choi et al. 2012;
Choi et al. 2017) and structural imaging in humans (Jarbo and
Verstynen 2015; Darki et al. 2018). Such converging regions are
by their connectivity in a position to integrate and strengthen
cortico-cortical connections. In support of this, we previously
found that microstructure of a convergence region of the DS is
more highly associated with WM capacity than nonconvergence
regions (Darki et al. 2018).

The VS influences the DS by spiraling, dopaminergic connec-
tions via the ventral tegmental area (VTA), and substantia nigra
(SN) (Haber et al. 2000). This ventral–dorsal interactivity might
be crucial for striatal function, and is implicated in habitual drug
dependence (Everitt and Robbins 2005; Belin and Everitt 2008) as
well as skill learning (Atallah et al. 2007). It was recently shown
that inter-individual differences in the connectivity between
VS and DS can be measured at rest in humans, and that this
connectivity is increased by administration of a dopamine
D2-agonist (Piray et al. 2017).

We analyzed resting-state activity data from the Pediatric
Imaging, Neurocognition, and Genetics (PING) Study, which
included a large cohort of children, adolescents, and young
adults, between the ages of 3 and 20 years (Jernigan et al. 2016).
Correlation of activity between VS and DS at rest was measured
as an indicator of striatal connectivity. We also measured the
correlation between an intraparietal and a prefrontal cortical
area, which are activated during WM performance (Dumontheil
et al. 2011) and are located within the dorsal attention network
(Yeo et al. 2011), and might thus play a more general role in

cognitive control (Friedman et al. 2008; Cole et al. 2014; Reineberg
et al. 2015). Our hypothesis was that striatal connectivity would
affect fronto-parietal connectivity, which in turn would be
related to EF.

In addition to testing our main hypothesis, this sample
allowed us to investigate the role of striatum during childhood
cognitive development. It is important to distinguish the role
of striatum for learning as opposed to performance of learned
behavior (Everitt and Robbins 2005; Atallah et al. 2007). Similarly,
one can distinguish between capacity (i.e., the level of cognitive
capacity at a certain point) versus plasticity (i.e., is the change
in capacity over time, during development or cognitive training)
and we predicted that striatal connectivity would be more
related to plasticity (Klingberg 2014; Klingberg 2016). To test this,
we analyzed the bi-variate relation between cognition, striatal
connectivity, and age.

Methods
PING resting-state fMRI

Here, we used resting-state fMRI (rs-fMRI) data of the PING
Study (http://ping.chd.ucsd.edu/). PING was launched in 2009
by the National Institute on Drug Abuse and the Eunice
Kennedy Shriver National Institute of Child Health & Human
Development as a 2-year project of the American Recovery
and Reinvestment Act. The primary goal of PING is to create a
data resource of highly standardized and carefully curated MRI
data, comprehensive genotyping data, and developmental and
neuropsychological assessments for 1493 typically developing
children and adolescents aged 3–20 years, from 6 major
continental populations (African, Central Asian, East Asian,
European, Native American, and Oceanic). The scientific aim of
the project is, by openly sharing these data, to amplify the power
and productivity of investigations of healthy and disordered
development in children and to increase understanding of the
origins of variation in neurobehavioral phenotypes. For up-to-
date information, see http://ping.chd.ucsd.edu/.

The PING imaging dataset was collected using 3 different (3T)
scanner manufacturers: GE, Siemens, and Philips. The imaging
protocols and the pulse sequence parameters (http://pingstudy.
ucsd.edu/resources/neuroimaging-cores.html) were optimized
to provide equivalent contrast properties (Jernigan et al., 2016).
The rs-fMRI volumes of the Siemens scanners were acquired
with TR = 3000 ms, TE = 30 ms, and voxel size = 3 ∗ 3 ∗ 3.5 mm;
the rs-fMRI volumes of the Philips scanners were acquired with
TR = 2500 ms, TE = 30 ms, and voxel size = 2.67 ∗ 2.67 ∗ 3 mm;
and the rs-fMRI volumes the GE scanners were acquired with
TR = 3000 ms, TE = 30 ms, and voxel size = 3 ∗ 3 ∗ 3 mm. Subjects
were instructed to lay still and fixate on a white cross displaying
on a black background.

For our current study, we used the preprocessed rs-fMRI
volumes provided by the PING repository. As part of the PING
preprocessing pipeline, the volumes were all normalized to stan-
dard MNI template after slice timing correction and realign-
ment. Moreover, a spatial smoothing using a Gaussian kernel of
5 mm and a grand-mean intensity normalization of the entire
4D dataset were performed. The rs-fMRI data was inspected
for head movement and artifacts, and consequently the mean
frame-to-frame parameter was computed. We used the mean-
square of the 6 head movement variables as the head movement
parameter and included it as a covariate in our statistical anal-
ysis. Moreover, the number of rs-fMRI volumes was found to be
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different and varied from 19 to 300 volumes across individuals
due to the different scanning protocols. We excluded from the
analyses the subjects with rs-fMRI volumes less than 50 (number
of subjects included = 572, F/M = 289/283). The subjects included
in the analysis had either 50, 128, 156, or 300 volumes. We
added this difference in number of volumes and the site of data
collection as confound variables in our statistical analyses.

Regions of interest selection and functional
connectivity

In order to select a region of interest (ROI) in the DS with
projections to both frontal and parietal cortices, we performed
striatum parcellation on the diffusion tensor imaging (DTI) data
of 70 randomly selected subjects from the PING dataset. To find
a more accurate anatomical parcellation, we also included 70
randomly selected subjects from the Human Connectome
Project (HCP) dataset, which has a higher resolution (Van Essen
et al. 2013). The imaging protocols for PING and HCP DTI data are
provided in (http://pingstudy.ucsd.edu/resources/neuroimaging-
cores.html) and (Van Essen et al. 2013), respectively. The
diffusion-weighted images were preprocessed using intensity
normalization, distortion correction, eddy current, and motion
correction (for details see Darki et al. 2018). The entire striatum,
including the caudate nucleus, putamen, and the accumbens
nucleus, was used as a seed region in a probabilistic fiber
tracking to find the striatal regions connected to 7 different
cortical regions (i.e., orbitofrontal cortex, dorsolateral prefrontal
cortex (DLPFC), parietal cortex (PC), rostral motor, caudal
motor, and temporal and occipital regions were selected as
classification targets) (Darki et al. 2018). For each individual,
the probability of connection to each cortical region was
quantified. Each probability map was then thresholded to
include only voxels with > 15% probability of connection. Next,
we superimposed the probability maps from all randomly
selected subjects (Fig. 1a), and retained only the voxels that
survived in > 70% of the individuals. The striatal regions with
connections to the main targets of interest (i.e., the DLPFC and
the PC) were selected (shown in yellow and red for DLPFC and
PC, respectively, in Fig. 1b) and overlaid together to define the
convergence region in the striatum with connections to both
DLPFC and PC (shown in orange, Fig. 1b). The convergence region
within the caudate nucleus was selected as the DS ROI for
the functional connectivity analysis (the orange ROI in Fig. 1d).
This convergence region did not end up in the VS, instead we
anatomically defined the entire nucleus accumbens based on
Harvard-Oxford subcortical atlas as the VS ROI (the green ROI
in Fig. 1d).

Moreover, we selected the superior frontal and intraparietal
cortical regions (i.e., combined inferior and superior parietal)
activated during a visuo-spatial WM performance in a typical
developmental sample of children and adolescents (Dumon-
theil et al. 2011) as our cortical ROIs (shown in blue, Fig. 1c
and d). These regions previously showed correlations with WM
performance during development (Darki and Klingberg 2015).
Moreover, these cortical areas overlapped with the frontal and
parietal areas previously selected as target regions for striatal
convergence ROI selection (Darki et al. 2018) and located within
the dorsal attention network (Yeo et al. 2011). As an alternative
to select the entire DLPFC and PC, we selected these functionally
defined fronto-parietal regions to be more precise in ROI selec-
tion (as these regions are involved in EF) and to select rather
smaller cortical regions for functional connectivity analysis.

After the ROI selection, the preprocessed rs-fMRI time-series
were extracted from all voxels within homologous ROIs in both
hemispheres and averaged to create 1 single time-series for
each ROI and each individual, separately. Consequently, the
functional connections between frontal and parietal ROIs as
well as the VS and DS were computed as the full correlations
of their time-series for each individual, using FSLnets (https://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets), and respectively called as
F-Pfc and VS-DSfc in the current study.

PING cognitive assessment

We selected 3 specific cognitive assessments among the
many conducted by PING using the NIH Toolbox Cognition
Battery (Akshoomoff et al. 2014) (http://www.nihtoolbox.org/).
We selected these tasks based on their reliance on critical
processes that make up EF (Friedman and Miyake 2017). The
tasks were the list-sorting task (designed to assess WM), the
flanker task (designed to assess inhibitory control), and the
Dimensional Change Card Sort (DCCS; designed to assess set-
shifting/flexibility).

In the list-sorting task (Akshoomoff et al. 2014), a series of
items were presented on the computer screen both visually and
orally, 1 stimulus at a time. Then, the participants were asked
to recall the items out loud in order of size in the real world,
from smallest to largest. There were 2 conditions in the task: in
one, all items were from the same category (e.g., animals), and
in the other, the items were mixed from 2 different categories
(e.g., animals and food), and participants had to report all stimuli
in order of size from 1 category first, and then the other. The
number of items in each series increased from 1 trial to the next
and the task stopped when the subjected failed in 2 trials of the
same length. For the list-sorting task, we used the total items
correct across all trials as the measure of WM performance.

The flanker task was designed to assess inhibitory control in
the context of visual selective attention (Akshoomoff et al. 2014).
Participants were required to indicate the left–right orientation
of a centrally presented stimulus while inhibiting attention to
the potentially incongruent stimuli that surround it (i.e., the
flankers, two on either side). The stimuli were arrows pointing
left or right (and for young children, the stimuli were fish point-
ing left or right, so to be more engaging and larger, which makes
the task easier). On some trials, the orientation of the flanking
stimuli is congruent with the orientation of the central stimulus,
and on others it is incongruent. We used here the performance
on the incongruent trials. In every trial, participants gave their
answers (a choice between left of right arrow) by touching the
screen. Scores for the flanker task were created using a 2-vector
method (developed by the NIH Toolbox team) that incorporates
accuracy and, for participants who maintained a high level of
accuracy (>80% correct), response time as well. Each type of
score ranged from 0 to 5, for a maximum total score of 10.

The DCCS from NIH Toolbox was designed to assess set-
shifting and cognitive flexibility, and it is frequently used
to measure EF in young children (Akshoomoff et al. 2014).
Participants were shown 2 target cards (e.g., a blue rabbit and a
red boat) and asked to sort a series of bivalent test cards (e.g.,
red rabbits and blue boats) according to either color or shape.
Participants gave their answers by touching the screen. Every
5 trials, the rule is changed. Scores for the DCCS were created
using the same 2-vector method described above for the flanker
task. Each type of score ranged from 0 to 5, for a maximum total
score of 10.
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Figure 1. (a) Group map of striatal regions with connections to the DLPFC and the PC across all subjects thresholded at the probable value of .15 in individual space

for both PING and HCP subsamples. The group maps are thresholded at 20% of all subjects to display the connected regions that are consistent in at least 20% of
participants and the color bar indicates the percentage of the number of subjects. (b) The convergence region (orange) in DS based on the overlaps of the striatal areas
receiving connections from DLPFC (yellow) and PC (red) for at least 70% of participants. (c) The frontal and parietal regions of interest (blue) based on activation during
a visuo-spatial WM task in children and adolescents (Dumontheil et al. 2011). (d) The cortical ROIs (blue), dorsal striatal convergence region (orange), and the nucleus

accumbens (green). Correlations of resting-state functional connectivities were calculated between ventral and dorsal striatum, as well as between the frontal and
parietal regions (purple dotted lines).

Statistical analyses

In order to test our hypothesis, we used structural equation
modeling (SEM). As a hybrid of multiple regression and fac-
tor analysis techniques, SEM allows simultaneous assessment
of the strength and direction of the interrelationships among
multiple dependent and independent variables, and examines
the direct and indirect effects of 1 variable upon another (Kline
2015). Since SEM can have multiple indicators for a single (latent)
variable, it reduces measurement error because only the shared
variance between measures are considered, leading to more
accurate and often stronger relationships between latent vari-
ables that is found from other multivariate methods such as
MANOVA or multiple regression (Kline 2015). The use of SEM has
been well validated for modeling functional connectivity from
fMRI (Rogers et al. 2007), and seems to be especially fitting for
resting state data (James et al. 2009). Furthermore, SEM has been
widely used in brain imaging research on EF (Schlösser et al.
2006).

Using SEM, we tested 2 models of relationships between
the variables. The first was a simple model (Fig. 2a) testing the
hypothesis that the VS-DSfc influences the F-Pfc, which in turn
influences the latent construct of EF (as measured by the cogni-
tive assessments of list-sorting, flanker task, and the DCCS). The
same hypothesis was also evaluated in a full model (Fig. 2b) but
also including effect of age as well as the confounding variables
of head movement, site, and number of rs-volumes.

We used the maximum likelihood estimation in AMOS 25 to
acquire the solution for our 2 models. This particular estimation

is considered robust in comparison to other procedures like
Generalized Least Squares and Asymptotically Distribution-Free
estimations, and allows reliable fit indices with relatively small
samples (Chou and Bentler 1995). We assessed model fit by using
the absolute index of Root Mean Square Error of Approximation
(RMSEA), which describes how well the model represents the
observed data, and where lower values indicate better fit. RMSEA
values of 0.08 and below are considered good (Hu and Bentler
1999). In addition to this absolute index, we also assessed model
fit with the incremental index of Comparative Fit Index (CFI).
This describes how well the model fits in comparison to a base-
line model in which all variables are uncorrelated and without
latent variables, and for which higher values indicate better fit
(Kline 2015). CFI indicate an adequate model fit at values of 0.95
or above (Hu and Bentler 1999). We chose these tests due to
their statistical relevance and frequent use (Schreiber et al. 2006;
Hooper et al. 2008; Kline 2015). For assessing the significance of
individual parameters such as regression paths and correlations,
we chose an alpha value of 0.05.

We tested for the hypothesized interaction effect between
age and VS-DSfc on F-Pfc in the full model by using the residual-
ized product scores between age and VS-DSfc—a reliable method
to test interaction in SEM, as recommended in Lance 1988. We
also tested for the indirect effect of VS-DSfc on EF via VS-DSfc

in the full model. For that, we used the SEM mediation analysis
of bias corrected confidence interval (CI) with 2000 bootstrap
iterations and a CI of 95%. In addition, we tested a moderation of
gender via chi-square differences by using multigroup analysis
in the full model for all paths (i.e., comparing an unconstrained
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Figure 2. (a) Simple model of the relationship between VS-DSfc, F-Pfc, and EF. The model overall had a good fit to the data. Arrows going out of the latent factor (big circle)

of EF represent factor loadings, while other straight arrows represent regression weights, and curved double-sided arrows between 2 variables represent correlations.
Double-sided arrows going toward the same variables represent error (i.e., leftover variance due to flaws in measurements and estimations). All parameters shown are
standardized. (b) Full model of the relationship between VS-DSfc, F-Pfc, and EF, and age, including the confounding variables of site, head movement, and rs-volumes.
The model overall had a good fit to the data. Arrows going out of the latent factor (big circle) of EF represent factor loadings, while other straight arrows represent

regression weights, and curved double-sided arrows between 2 variables represent correlations. Double-sided arrows going toward the same variable represent error.
All parameters shown are standardized.

model between genders with a fully constrained model) and for
only the most relevant paths (i.e., comparing an unconstrained
model between genders with a model constrained only for that
particular path or paths).

Because PING is a developmental sample, we performed an
independent analysis focusing on the age-related changes for
F-Pfc and VS-DSfc as well as the age-related improvements in the
latent factor for EF. To obtain scores of EF, we used an exploratory
factor analysis in SPSS 25 that would be separate from the SEM
analyses above (and so could add additional support for the sta-
bility of the EF factor). Exploratory factory analysis is a statistical
method that describes variability among multiple correlated
variables, and captures the variance shared in common between
variables (as opposed to techniques such as principal compo-
nent analyses that capture both shared and nonshared variance,

and are better suited for purposes of dimension reduction). We
defined the EF factor as the first factor from the analysis, and
extracted the factor scores on EF using the regression method
for the following developmental analyses. (A factor score is
analogous to an average z score of an individual’s performance
on all tasks, where the performance on each task is weighted
according to the degree of loading on the first factor.)

For the developmental analyses, we compared a linear
model (y = a + b∗age) of development against an inverse function
(y = a − b/age); where the asymptote “a”, that is, peak cognitive
capacity (EF score) of an individual, approached in the end of
cognitive development (the function would not be applicable to
the entire life-span). An inverse function has previously been
found to be a better model for development of WM during
childhood and adolescence (Dumontheil et al. 2011).
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Results
SEM analysis indicated that the simple model (Fig. 2a) had a
good fit to the data (RMSEA = 0.078; CFI = 0.973). The performance
of cognitive tasks showed all significant factor loadings on the
latent trait here tentatively called EF, based on prior descriptions
(Friedman et al. 2008). Furthermore, the path from the functional
connectivity between ventral and dorsal striatum (VS-DSfc) to
fronto-parietal functional connectivity (F-Pfc) was significant
(β = 0.25, P < 0.001), as was the path from F-Pfc to EF (β = 0.14,
P = 0.001).

The full model included age as well as potential confound-
ing variables (Fig. 2b). This model also showed a good fit
(RMSEA = 0.043; CFI = 0.987). As in the simple model, the path
from VS-DSfc to F-Pfc was significant (β = 0.27, P < 0.001), as was
the path from F-Pfc to EF (β = 0.08, P = 0.006). Of relationships new
to the full model, it is of note that the path from VS-DSfc to EF
was significant (β = −0.09, P = 0.002), and that age had significant
positive effect on F-Pfc (β = 0.20, P < 0.001), and EF (β = 0.78,
P < 0.001), and a negative effect on VS-DSfc (β = −0.24, P < 0.001).

Regarding the confounding variables, their role on the study’s
relevant variables was frequently nonsignificant; except for a
significant effect of rs-volumes on VS-DSfc (β = −0.24, P < 0.001).
Considered together, the full model explains 68% of the variance
in EF in our sample. Meanwhile, a full model with age removed
still explains 21% of the variance in EF (since confounds play
a small or nonsignificant role, this means that the functional
connectivities are able to explain a substantial part of variation
beyond age).

Importantly, there was a significant indirect effect of VS-DSfc

on EF via F-Pfc (β = 0.03, P = 0.001, 95% CI [0.014, 0.043]), which
suggests that the role of striatal connectivity to differences in
EF occurs in part through its relationship with fronto-parietal
connectivity.

There was no significant interaction between age and VS-
DSfc on F-Pfc (β = 0.1, P = 0.837), which suggests that the effect of
VS-DSfc on F-Pfc does not depend on differences in age among
the participants. For the effect of gender, there was a signifi-
cant difference between the full model for males and females
(df = 18,χ2 difference = 43.80, P = 0.001). However, the connections
relevant to our hypothesis were significant in both models,
and did not differ between genders: VS-DSfc to F-Pfc (df = 1, χ2

difference = 0.65, P = 0.421; with β = 0.30 for females and β = 0.22
for males), F-Pfc to EF (df = 1, χ2 difference = 0.17, P = 0.684; with
β = 0.07 for females and β = 0.08 for males).

Furthermore, we tested the full model in SEM with only list-
sorting task instead of the latent variable of EF, in order to test
if the relationships would also hold specifically for WM (as it
might be relevant to the literature). This model showed a good
fit (RMSEA < 0.001; CFI = 1.00), and all conclusions from the prior
full model with EF still held; of note, a significant path from VS-
DSfc to F-Pfc (β = 0.27, P < 0.001), as well as the path from F-Pfc

to WM (β = 0.08, P = 0.008). As in the full model with EF, the full
model with WM showed no interaction with age, and similar
results for the effect of gender.

In order to explore the specific importance of the functional
connectivity of the fronto-parietal regions, we tested the full
model in SEM replacing F-Pfc by another 2 regions of the cortex:
the functional connectivity between the right V1 and the left
V1 of the occipital cortex (RV1-LV1fc). This model had a good
fit (RMSEA = 0.04; CFI = 0.99) and although the path from VS-
DSfc to RV1-LV1fc was significant (β = 0.18, P < 0.001), the path
from RV1-LV1fc to EF was not significant (β = −0.4, P = 0.109). This
suggests that the VS–DS connectivity does not affect cognition

through any general cortico-cortical connectivity, but might be
more specific to particular regions of the cortex, such as F-P.

In an analysis independent from the SEM, we assessed the
age-related changes for F-Pfc and VS-DSfc as well as the age-
related improvements in the latent factor for EF. The exploratory
factor analysis resulted in an EF factor accounting for 74.2%
of the variance in performance (eigenvalue = 2.23). Performance
from the 3 cognitive tasks loaded consistently and in the same
direction: the list-sorting task had a loading of 0.78; the flanker
task had a loading of 0.89; and the DCCS had a loading of 0.90.
Of note, the factor scores from the exploratory factory analysis
and the scores from the SEM in the full-model used in previous
analyses had an almost perfect correlation (r = 0.99, P < 0.001)—
further showing the stability of the construct of EF based on the
PING tasks.

Figure 3a and b shows the development of EF and VS-DSfc

over age. The development of EF (the factor scores extracted
from the exploratory factor analysis) was significantly described
by an inverse function (fit by inverse of age (y = a − b/age):
β = −18.03, P < 0.001, 95% CI [−18.6755 to −17.3815]) and was
significantly bette than a linear function (y = a + b∗age) (AIC:
1496.8 for linear and 958.5 for inverse function; BIC: 1510.9
for linear and 972.6 for inverse function). The derivative of
the inverse is positive but decreasing quadratically with age
(b/age2). We found that the function c − d/age2 significantly
predicted the development of VS-DSfc over time (fit by inverse
of square age: β = 4.53, P < 0.001, 95% CI = [2.93–6.12]). This model
was significantly better than a constant model (F(569) = 31.1,
P < 0.001), which is the derivative of a linear function. Therefore,
striatal connectivity was related to the change in EF over time,
consistent with a role for cognitive plasticity.

In the light of the nonlinear development of EF seen in our
developmental analyses, we re-analyzed all SEM models using
age inverse (1/age) instead of age as a covariate. The new model
with 1/age continued to have a good fit to the data, and all
conclusions from the prior analyses still held (e.g., significant
association between VS-DSfc, significant association between
F-Pfc and EF).

Discussion
Using fiber tracking and diffusion weighted imaging, we identi-
fied a part of the DS that receives converging projections from
both prefrontal and intraparietal cortices. We then measured
the correlation between VS and the dorsal convergence region
as an index of striatal connectivity. Inter-individual differences
in striatal connectivity affected differences in fronto-parietal
connectivity, which in turn was positively associated with EF
(here, the latent factor in common among tasks tapping WM,
inhibition, and set-shifting/flexibility). These results support a
model by which striatum affects cognition via the strengthening
of cortico-cortical connections.

We also investigated the role of developmental stages in
our study. First, our results showed that the effect of striatal
connectivity on fronto-parietal connectivity was robust over
time: the influence was as strong in older as younger children
(i.e., the influence was independent of developmental stages).
Similarly, the relationship between fronto-parietal correlation
and cognition was also robust over time. In contrast, we found
that age differences had a small and significant influence on
the functional connectivities between fronto-parietal regions
and between striatal regions, as well as a very large influence
on EF. These results are in agreement with the general pattern
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Figure 3. (a) The development of EF over age with a rapid increase in younger children followed by a slower increase toward asymptote. (b) VS-DS functional connectivity

relation to age a derivative function of inverse age, showing a rapid decrease followed by a slower decrease and VS-DSfc over age. (c) Derivative function of inverse age
fitting the development of D2-receptor density in striatum based on the values reported in postmortem study (Seeman et al. 1987).

in the recent literature, which suggests substantial changes in
structural and functional networks related to EF across develop-
mental stages (Luna et al. 2015). From childhood to adolescence,
there is increased integration between fronto-parietal regions
(Hwang et al. 2013; Simmonds et al. 2014), which are related to
top-down cognitive control and EF (Luna et al. 2004). These are
in agreement with our results of positive effect of age on fronto-
parietal connectivity and on EF.

In a separate analysis, we found that development of EF was
best described by an inverse function, with a rapid increase in
younger children followed by a gradually slower increase toward
asymptote. (This model would of course only be applicable to
development, not the decline during aging.) Interestingly, stri-
atal connectivity was related to age as the derivative of that
function, with a rapid decrease followed by a slower decrease
(Fig. 3b). Note that our measure of striatal connectivity is the cor-
relation between ventral and dorsal striatum, so it could reflect
how VS affects DS via spiraling connections (Choi et al. 2012).
Such connections include divergent projections from VTA or SN
to ventral and dorsal striatum. We cannot exclude that such
divergent projections were the only source of connectivity, that
is, that the ventral–dorsal correlation reflected a co-activation by
the VTA/SN, rather than originating in output from the VS. But
both scenarios reflect striatal connectivity in that they involve
activation of both VTA/SN, ventral and dorsal striatum, and are
dependent on dopamine D2-receptors.

Development of D2-receptor density in striatum has previ-
ously been investigated in postmortem brains (Seeman et al.

1987). They reported a peak density at age 2, followed by a
gradually slower decline (Fig. 3c), consistent with later imaging
(Rinne et al. 1990). This is a very similar pattern to the decline of
striatal connectivity that we found here, and can be significantly
fitted by the same model (inverse of age squared). This suggests
that the ventral–dorsal correlation in activity is closely related
to D2-receptor density; consistent with the positive effect of D2-
agonist on ventral–dorsal correlation (Piray et al. 2017), and in
accordance with striatum’s histology (Haber et al. 2000).

Thus it seems that striatal connectivity was related to the
rate of cognitive improvement over time rather than absolute
level of cognitive performance. In other words, the striatum
might be more related to cognitive plasticity than capacity,
as previously suggested (Klingberg 2014; Klingberg 2016). This
is consistent with findings that striatal signal predicts future
cognitive capacity (Ullman et al. 2014; Darki and Klingberg 2015;
Nemmi et al. 2018), and is related to cognitive improvement
during WM training (Olesen et al. 2004; Dahlin et al. 2008; Kuhn et
al. 2013). The volume of the nucleus accumbens has previously
been associated with a special kind of motivation called “grit”
and positively associated with improvement during mathemat-
ical and WM training (Nemmi et al. 2016).

A role in cognitive plasticity is consistent with the role of
striatum for learning (Knowlton and Squire 1993; Graybiel 2008).
In psychological terms, it extends the role from learning of
habits and implicit memory to include learning of cognitive
functions. In neural terms, the same mechanisms might under-
lie some or all of these phenomena, namely a strengthening of
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cortico-cortical connections. Since most parts of cortex connect
to the striatum, the region of fronto-parietal convergence would
presumably only be one of many convergence regions, affecting
many networks.

We believe it is important to spell out the major limitations
of the current study. First, our results are based on correlations
of inter-individual differences, so, of course, are only indirect
evidence of causation. In addition, our models were not able
to discern the directionality of the effect between the striatal
functional connectivity (VS-DSfc) and fronto-parietal functional
connectivity (F-Pfc). Although, as mentioned above on spiral-
ing connections and striatal plasticity, we believe the striatum
is driving the changes in fronto-parietal (which in turn drive
improvements in EF). However, it could be the other way around
with fronto-parietal being the driver.

Moreover, resting state functional connectivity analysis can-
not distinguish between the direct and indirect functional con-
nections. We only describe the relationship between connectiv-
ities with 1 observation per subject, not how 1 network affects
the other on a second-by-second timeframe. In other words, the
plasticity processes we are studying here are assumed to happen
in a large time scale, where changes in striatal functional slowly
change fronto-parietal connectivity over months or years. This
is why we believe details on the time-series are less relevant to
this study. The rs-fMRI data that we included in this study varied
in the number of volumes due to different scanning time and
motion scrubbing across subjects. Although we have controlled
for this variable in the statistical analysis, this can be mentioned
as one of the limitations. DTI and tractography methods are
also sensitive to noise and motion that may lead to incomplete
identification of structural connections. At last, our sample is
cross-sectional, and so conclusions about age effects should be
taken with caution.

Motivation, learning and EF have all been associated with
striatal function. The present results are 1 step toward a model
integrating these concepts where the connectivity between VS
and convergence regions of the DS strengthens cortico-cortical
connections. Exactly how this strengthening occurs, and for
which other behavior this is relevant, will be a question for
future research.

Notes
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