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Change by challenge: A common genetic basis behind
childhood cognitive development and cognitive training
Bruno Sauce1, John Wiedenhoeft 2, Nicholas Judd1 and Torkel Klingberg 1✉

The interplay of genetic and environmental factors behind cognitive development has preoccupied multiple fields of science and
sparked heated debates over the decades. Here we tested the hypothesis that developmental genes rely heavily on cognitive
challenges—as opposed to natural maturation. Starting with a polygenic score (cogPGS) that previously explained variation in
cognitive performance in adults, we estimated its effect in 344 children and adolescents (mean age of 12 years old, ranging from 6
to 25) who showed changes in working memory (WM) in two distinct samples: (1) a developmental sample showing significant WM
gains after 2 years of typical, age-related development, and (2) a training sample showing significant, experimentally-induced WM
gains after 25 days of an intense WM training. We found that the same genetic factor, cogPGS, significantly explained the amount
of WM gain in both samples. And there was no interaction of cogPGS with sample, suggesting that those genetic factors are neutral
to whether the WM gains came from development or training. These results represent evidence that cognitive challenges are a
central piece in the gene-environment interplay during cognitive development. We believe our study sheds new light on previous
findings of interindividual differences in education (rich-get-richer and compensation effects), brain plasticity in children, and the
heritability increase of intelligence across the lifespan.
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INTRODUCTION
During childhood, cognitive abilities dramatically improve to make
us who we are: persons capable of multiple academic, social, and
professional activities. That process is incredibly complex—the
interplay of genetic and environmental factors has preoccupied
multiple fields of science and sparked heated debates over the
decades1,2. Studies on the development of cognition have been
surrounded by difficulties, and new advances are just now
shedding light on mechanisms3.
It’s useful to start with the seemingly obvious fact that

cognitive development differs from child to child. Some children
develop their general cognition, such as reasoning, attention,
and working memory (WM), at a rapid rate, while some others
struggle far behind4–6. What explains these interindividual
differences? We know that genetic inheritance must play a
substantial role—decades of twin studies have shown cognition
to be highly heritable in a multitude of populations and
environmental contexts7. And recent studies show that genes
can have powerful and complex interplays with the environment
during development4,8.
How does gene-environment interplay come about? Many

researchers favor the idea of natural maturation—during child-
hood, genes are the main drivers of development and need only a
supporting role of common experiences available to almost every
child, such as visual stimuli and social interactions (for reviews, see
refs. 2,9–11). Like a train track, genes set the “default course” of
development, while most environments serve as the coal to keep
the train going (or, in the case of extremes environments,
obstacles that can lag development). Under this maturation
hypothesis (also known as experience-expectant), variation in
cognitive change exists because some sets of genes code for
brains with faster default maturation than others. In other words,
children differ mostly because they have different default courses.

In contrast, the cognitive challenge hypothesis (also known as skill
learning or experience-dependent) proposes that the effect of
developmental genes relies heavily on cognitive experiences12–14.
Under that alternative explanation, variation in cognitive change
exists because genes interplay with the many distinct (and
idiosyncratic) cognitive challenges in children’s environments.
These two hypotheses have been well-studied for simpler traits

in nonhuman species. There are traits that can be mostly
explained by natural maturation, such a binocular vision in cats
and heat resistance in fruit flies. In those traits, experience-
expectant genes set a default course, and the environmental
interplay with genes is expected and strictly planned by
evolution15. For other traits, such as singing in songbirds and
body growth in fish, there are large genetic variations that
interplay with evolutionarily new and unexpected environments15.
Those studies show there are multiple genes in nature that
evolved to be flexible (or open-ended) towards the effect of
particular experiences16.
However, for general cognitive abilities in humans, the picture is

still inconclusive. We do not know if the interindividual differences
in cognitive improvement in human children emerge mostly from
experience-expectant genes (maturation hypothesis) or with
flexible genes (cognitive challenges hypothesis). Due to practical
reasons, it is extremely elusive to understand the interplay
between genes and environments4,17. Two big problems have
hindered progress: The first problem is that experiences are
difficult to control or even measure accurately over years of
development. So, studies on typical childhood development will
always confound the cognitive challenge hypothesis with the
maturation hypothesis—at first glance, any measured interindivi-
dual differences in cognitive development are as likely to arise
from (flexible) genes interplaying with unknown cognitive
experiences as they are to arise from (experience-expectant)
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genes via natural maturation. To contrast these hypotheses, we
believe that developmental studies should be combined with
intervention designs that create deliberate and trackable cognitive
experiences. The second problem is that genetic studies with
cognitive interventions have all looked at only a few candidate
genes or DNA markers (e.g., refs. 18–21). General cognition is a
complex polygenic trait, influenced by thousands of genetic
regions, so those past studies cannot give us a full and reliable
genetic picture.
Here we tested the cognitive challenge hypothesis for cognitive

ability. To accomplish this, we combined genetic data from a
longitudinal sample of typical childhood development and an
intervention sample with intense, short-term (25-day-long)
cognitive training. No study to date had such a design, partly
due to conceptual quagmires (to our knowledge, we are the first
to propose a study on gene-environment interplay in develop-
ment by contrasting the role of a genetic set on the gains from
cognitive training and on the changes in typical development)
and partly due to lack of power. In the past, studies able to
account for multiple genes needed to have hundreds of
thousands of participants—an unrealistically large sample for
experimental, cognitive interventions. Recently, that problem was
partly overcome, thanks to the existence of reliable polygenic
scores—indexes that put together thousands of genetic regions
that alone would have extremely small predictive value. A large,
genome-wide association study with 1.1 million people was able
to estimate the effect of genetic regions on differences in
cognitive performance, educational attainment, and mathematical
ability22. With that information available, we were able to sum the
reported effect sizes of all available genetic markers to create
polygenic scores for cognitive performance (cogPGS) for each
individual in our sample—providing our study with a much
greater statistical power than typical in the past.
We focused on WM, a trait central to other general cognitive

abilities, and responsible for the active maintenance and
manipulation of information. High WM is associated with

competence in reasoning and learning23, and benefit future
school performance24, while low WM is associated with the
inattentive symptoms of ADHD25. Recent studies have shown that
structured WM training programs can have beneficial effects on an
individual’s WM26–29, and suggests WM is, to some extent,
malleable to experiences.
Our study rests on the following reasoning: if cogPGS can

explain the variation in WM changes in both typical development
and training, it suggests that both have genetic variation the
interplays with cognitive experiences. This, we believe, represents
a test of the cognitive challenge hypothesis—more specifically,
the prediction that cogPGS explains the change of both
development and training over time of cognition.

RESULTS
Our study included 344 children, adolescents, and young adults by
combining a developmental and a training sample. The develop-
mental sample (n= 160) was recruited to represent the general
population, participants were between 6 and 25 years old and had
their WM assessed twice with a 2-year interval. In the training
sample (n= 184), participants were between 7 and 19 years old
and completed an average of 24.7 days of WM training (SD=
1.06). In both samples, we measured WM performance by
averaging standardized scores on a visuospatial and a verbal
WM task.
We created polygenic scores for cognitive performance

(cogPGS) using the SNP effect sizes from a multi-trait analysis
that focused on a GWAS of cognitive performance and
complemented by information from a GWAS on educational
attainment and a GWAS on mathematical ability22.

Change in WM
Figure 1A shows baseline WM performance in the developmental
sample, showing an increase in capacity with age, with gradual

Fig. 1 WM performance at different time points and the variability of WM change between individuals. A Baseline WM performance in the
different age groups from the developmental sample. That variable is a combination of visuospatial and verbal working memory tasks and is
total the number of correct trials given at the start of the study and averaged between the two tasks. Shades represent standard error. B WM
performance on different days during cognitive training in the training sample. This daily WM performance is a combination of visuospatial
and a verbal working memory tasks and represents the average level of the three successful trials with the highest level on each day and
averaged between the two tasks. Shades represent the standard error of the mean. C, D Distribution of standardized change in WM per count
of individuals in the developmental sample (after 2 years) and the training sample, respectively. The WM change variable is the subtracted
baseline WM from the follow-up WM in each sample and then separately standardized (mean of zero and standard deviation of 1). Values of
zero represent the mean change in each sample.
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flattening of development at older age-range. Baseline WM
performance was subtracted from follow-up performance. This
showed that, regardless of starting age, participants had a
significant longitudinal increase in their WM after 2 years (β=
0.60, p < 0.001), with a mean increase of 14% (±2.5).
Figure 1B shows the average daily values in WM performance

over the training duration in the training sample. Training led to a
large average improvement in the performance of the trained WM
tasks at the end of the intervention (β= 2.10, p < 0.001), with a
mean increase of 34% (±1.5). Importantly, both samples showed
large interindividual differences in the amount of WM change (Fig.
1C, D), which is the subtraction of baseline WM from the follow-up
WM in each sample.

Effect of age and gender on WM
To understand the effects on initial levels of WM, we created a
model (here called “baseline WM model”) with baseline WM as the
outcome and the predictors: sample (developmental and training),
baseline age, gender, and cogPGS. Baseline WM was the
performance on the first visit in the developmental sample, and
maximum performance during days 2 and 3 of the training
sample. As expected, we found that age affected the baseline
levels of WM (β= 0.54, p < 0.001). There was no effect of gender
(p= 0.44).
To understand the effects on the change in WM after 2 years

(developmental sample) and after training (training sample), we
subtracted baseline WM from the follow-up WM to obtain the
variable WM change. We then used a general linear model (here
called “WM change model”) with WM change as the outcome and
the predictors: sample (developmental or training), baseline age,
gender, cogPGS, age x sample, and cogPGS x sample. The model
showed no effect of gender on the change in WM (p= 0.09). We
also found that there was no main effect of age on the change in
WM (p= 0.16), but an interaction of age with the type of sample
(p= 0.04). For the developmental sample, younger participants
changed more than older participants. This pattern was inversed
in the training sample, with older participants improving more
from the training.

Effect of polygenic scores for cognitive performance on WM
Using the baseline WM model, we found that cogPGS significantly
explained the baseline variation in WM (β= 0.10, p= 0.03). That
translates into 1.0% of variance explained by cogPGS after

accounting for the effect of gender and age differences. As
described in Methods, note that this polygenic prediction is
already controlled for population stratification, genotyping chip,
and batch type (done during quality control of genotype data
before obtaining the cogPGS), as well as gender and age (in the
baseline WM model for prediction).
Finally, we tested our main hypothesis: if cogPGS is related to

interindividual differences in change in development and training
and, if so, whether there are significant differences between
training and development. The change in WM in both develop-
mental and training samples can be seen in Fig. 2. The WM change
model showed that cogPGS significantly explained interindividual
differences in WM change (β= 0.15, p= 0.04), with 2.2% of
variance explained after accounting for the effect of gender, age,
sample, and the interactions. Importantly, there was no interaction
of cogPGS with sample (p= 0.46), which suggests that the effect
of cogPGS does not depend on the sample being developmental
or training.
To check the consistency of our results, we reanalyzed our data

with the following modifications: (1) Removing outliers with a WM
change score beyond three standard deviations from the mean
(five participants in total); (2) Using standardized age in each of
the samples separately. In the original analyses, we used actual
age—even though the two samples have around the same mean
age, differences in standard deviation could have mattered.
Reanalyses with these modifications (separately and combined)
confirmed our main finding: that PGS has a significant association
to change in WM (all p < 0.01), but there was no interaction
between PGS and group.

DISCUSSION
The role of genetic factors in modulating the effect of experiences
in cognitive development is a key question in developmental
psychology, behavior genetics, and cognitive neuroscience. Here
we showed that the amount of WM change in both a longitudinal
sample of typical development and an intervention sample of
cognitive training is in part explained by the same polygenic score
(a set of genetic markers known to explain variation in cognitive
performance at a single time point22). This genetic variation in
plasticity, or malleability, is a pattern that in evolutionary biology
has been considered a hallmark of flexible genes interplaying with
new, unexpected environments30,31.
Our results here are evidence for the cognitive challenge

hypothesis in cognitive development—more specifically, it sup-
ports the prediction that the genetic mechanisms of development
should be partly shared with those of cognitive training. This
implies that children’s cognitive abilities develop partly as a result
of the cognitive challenges that they experience, much like a
skill12,32,33. Our results are also evidence against purely natural
maturation, in which cognitive development is genetically coded
and with minimal influence of normal environmental variability.
However, the two processes are not mutually exclusive and could
coexist or dominate at different points during childhood.
One of the influential cognitive challenges during development

might be schooling. Our finding here could thus explain the
mechanism of why years of schooling, rather than chronological
age, drives the development of WM34, as well as why education
affects IQ35, and why twin studies show how environmental
effects can be responsible for the change in cognitive function
over time36,37.
For the developmental sample, younger participants exhibited

more change (during the 2-year interval) than did older
participants. This was expected and is in line with the literature
on cognitive development, which increases with a rate that is
inversely proportional to age, and approaches an asymptote in the
early 20s (Fig. 1A)38,39. However, for the training sample, older
participants improved more (during the 25-day interval) than

Fig. 2 Regression of cogPGS on the change in WM for the training
sample (red) and the developmental sample (blue). The WM
change variable is the subtracted baseline WM from the follow-up
WM in each sample and then separately standardized (mean of zero
and standard deviation of 1). Values of zero represent the mean
change in each sample. Values of cogPGS are also standardized to
have a mean of zero and a standard deviation of one. Shades
represent 95% confidence intervals.
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younger participants. At first glance, this will look surprising. How
could older children, whose brains are presumably less plastic,
show more improvement? In the cognitive training literature,
studies frequently find a Matthew effect (also known as the rich-
get-richer effect or the magnification effect), where the partici-
pants with the highest initial cognitive values tend to be the ones
getting the most gains from training40–42. There are a few
potential reasons for the Matthew effect: (a) A child with higher
WM will also focus better and therefore get more effective training
and improve more; (b) The underlying mechanism why a child is
high performing at baseline and why the child improves during an
intervention might be partly identical. One such mechanism is
highlighted in the present study: the same set of genes affect both
development and response to an intervention; (c) Cognitive
training programs often adapt to the performance of the user, so a
high-performing child will get more challenged—resulting in a
beneficial feedback loop. Important to our point here, this
beneficial loop is not as strong and pronounced during many of
the typical experiences/challenges in development, like a class-
room (in fact, schools might plausibly show the opposite pattern,
where teachers adapt and give more attention to the struggling
students). This distinction in how “adaptive” the challenges are
could be at the core of our contrasting finding in the effect of age
in development versus training (at least when it comes to the
“training” portion of developmental gains).
We believe our study also sheds light on the known increase in

the heritability of intelligence during childhood development.
Unlike many other traits, as we interact more with our
environment over childhood, genetic effects seem to become
more relevant to intelligence—heritability increases from 0.2 at 5
years of age to 0.6 by 16 years. Attempts to explain these results
include models of gene-environment interplay—genetically
endowed cognition influences one’s proximal environment and
that environment in turn influences one’s cognition in continuous,
reciprocal interactions, such as the multiplier theory13 and the
transactional model4. Our finding here adds another line of
evidence for these proposed models.
To our knowledge, only three other studies have measured the

effect of any cognitive polygenic score on longitudinal change
during development, and zero studies on cognitive training
changes. Of those, two studies have failed to predict development
from the cogPGS using as outcome measure either long-term
memory43 or a broad cognitive measure (including decision
making, pattern recognition, rapid visual processing, and WM)44.
What could explain these contrasting findings? We believe this
could be due to these polygenic scores for cognition having some
degree of specificity. Our group recently looked at the cognitive
change in typical development in a different sample45 and we
identified the neural correlates with a polygenic score similar to
our current cogPGS and using the same GWASs. That polygenic
score was found to correlate with global surface area, and, even
after correction for global effects, it was also associated with
surface area in a single region located in the intraparietal cortex.
This region is known to be linked to nonverbal, spatial cognitive
abilities, including spatial attention, visuospatial WM, reasoning,
and mathematics. This might explain why a cognitive polygenic
score has a stronger association with the spatial abilities measured
in our present study but not as strong with long-term memory
(more strongly related to the medial temporal lobe) or with broad
cognition (which includes a wider range of areas, including frontal
cortical regions on decision making and possibly occipital areas
involved in pattern recognition and rapid visual processing).
As was the case for the three studies mentioned above, our

measure of cognitive change also has an important limitation: it is
made of only two time points. Ideally, change should be estimated
by three or more time points46,47. Two time points are still a viable
way to measure change, but it comes with problems. In our
analyses, we used the difference method to estimate change in

WM (in other words, a subtraction between baseline and follow-
up values), as it is likely the best method for our purposes
here48,49. This method, however, always suffers from at least some
regression to the mean—the size of this problem depends on how
well the tasks are tapping into true performance (in other words,
how much measurement error there is in each of the two time
points). Because our WM measures were a composite of two tasks
in both samples and were based on multiple trials (as described in
more detail in Methods), that minimized the bias from regression
to the mean.
All things considered—our results are of great theoretical

importance to understand the genetics of flexible responses in
cognitive development. We consider it a valuable piece in the
elusive puzzle of gene-environment interplay in general cognition.
In addition, given the critical role of WM and other general
cognitive abilities in individual lives and societies, studies on the
development of these traits could contribute to shape new
avenues of research on training and plasticity, as well as help
informing public policies on education and addressing at-risk
groups with targeted interventions.

METHODS
Our study included a total of 344 children, adolescents, and young adults
from the combination of two samples: a developmental sample and a
training sample.

Developmental sample
The developmental sample had 160 participants who were recruited using
random sampling from a registry in Sweden and part of a longitudinal
study of typical development. These individuals were in nine age groups
(6, 8, 10, 12, 14, 16, 18, 20, and 25 years; mean age= 12.55, SD= 4.62), and
have an equal gender distribution (78 females). More details about this
sample in ref. 21. For the developmental sample, informed written consent
to participate in the study was obtained from all participants over 18 years
old and from the legal guardians of participants under 18.

Cognitive training sample
In the training sample, we had 184 participants from Sweden who
underwent cognitive training (described below) These individuals were
between 7 and 19 years old at the time of training (mean age= 12.32,
SD= 2.19), and have an equal gender distribution (86 females). More
details in ref. 19. For the training sample, informed written consent to
participate in the study was given by all participants older than 15 years
and by all legal guardians for participants younger than 15 years.
The cognitive training in our training sample used the software Cogmed

RM (Cogmed Systems, https://www.cogmed.com) developed by Torkel
Klingberg26,50. Prior studies using exactly this method have shown
significant improvements in WM when compared the improvement to
passive control groups51–53 and also to active control groups26,54,55.
Furthermore, studies with this method of training have related improve-
ment to genetic polymorphism in candidate genes19,20,56.
The Cogmed training program consists of 12 different WM demanding

tasks covering mostly visuospatial but also some verbal domains. Some of
the tasks are changed during the training period to increase variability so
that 8 of the 12 tasks are trained in each session.
As described in Holmes 200951, each training task involved the

temporary storage and manipulation of sequential visuospatial or verbal
information or both. Three of the tasks involved the temporary storage of
sequences of spoken verbal items, such as letters. These tasks tapped
verbal short-term memory, although the simultaneous presentation of
verbal information on the computer screen as it was spoken aloud in two
of the tasks likely also tapped visuospatial short-term memory and WM.
Two tasks involved the immediate serial recall of visuospatial information,
such as a series of lamps that illuminated successively and, which the child
attempted to recall in the correct order by clicking the appropriate location
with the computer mouse. Verbal WM was tapped by two tasks, which
involved the immediate recall of a sequence of digits in backward order. In
one task the digits were spoken aloud at the same time as the
corresponding numbers lit up on a keypad. Participants attempted to
recall the sequence of digits in a backward sequence by clicking on the
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keypad. In a second task, the numbers were not displayed as they were
spoken aloud. Three tasks required the processing and immediate serial
recall of visuospatial information that was either moving around the screen
during presentation and recall (e.g., asteroids that were continuously
moving around the screen lit up one at a time and had to be remembered
and recalled in the correct order) or moved spatial location between
presentation and recall (e.g., lamps light up one at a time in a grid, the
entire grid then rotates 90° and participants recall the order in which the
lamps lit up, even though these are now in new positions). Motivational
features in the program included positive verbal feedback, a display of the
user’s best scores, and the accumulation of “energy” based on
performance levels that was spent on a racing game completed after
training each day. The racing game was included as a reward and did not
tax WM.
All the training tasks had their difficulty level (number of items to be

remembered) adapted on a trial-by-trial basis for each task. This was done
according to a built-in algorithm that takes an individual’s previous
performance into consideration. The adaptation allows for training to be
performed at a level that is close to the capacity limit for each user.
Participants completed an average of 24.7 training sessions (SD= 1.06)
where each session lasted for an average of 36.5 min (SD= 8.8).
The study was approved by the regional ethical committees at

Karolinska Institutet and the Karolinska University Hospital in Stockholm,
Sweden.

Measuring cognitive variables
We measured WM of all participants to create measures of baseline
performance as well as the performance after training (in the case of the
training sample) and after development (in the case of the developmental
sample). WM in both samples was a combination of visuospatial WM and
verbal WM.
In both samples, visuospatial WM was assessed using a similar task: a

visuospatial grid task57 requiring remembering the location and order of
dots displayed sequentially in a four-by-four grid on a computer screen.
Verbal WM was also assessed in both samples using a similar task: the
backward digit recall test, where numbers were read aloud to the
participant who had to repeat them verbally in the reverse order. In the
experimenter-led testing of the tasks, difficulty was increased by one
level (number of items to be remembered) after at least two trials were
correctly answered on one level. For the training group, difficulty was
adjusted based on performance. Tasks terminated after three errors
were committed on one level. The score used was the total number of
correct trials.
For the developmental sample, we set the WM baseline as total the

number of correct trials given at the start of the study and averaged
between the visuospatial grid task and the backward digit recall test. WM
performance after development was, again, the same measure but now
between the two tasks given to the same participants after 2 years. For the
Training sample, we set the WM baseline performance as the mean level of
the three successful trials with the highest level on the visuospatial grid
task and a verbal backward digit span task during days 2 and 3. WM
performance after training was set as the mean level of the three
successful trials with the highest level on a visuospatial grid task and a
verbal backward digit span task during the two best training days. We used
these measures for the training sample to keep the same standard used in
a previous study19. As reported then, these two measures during training
are also related to the WM performances at day 1 and day 20 (last day with
complete data from all participants), with a correlation between mean day
1 WM performance and WM baseline of r= 0.875 and a correlation
between day 20 WM performance and WM performance after training of
r= 0.91219.

Genotyping, quality control, and imputation
Blood and saliva samples were collected for genetic analyses in both
samples, developmental and training. For the developmental samples,
genomic DNA was extracted in a 96-wells format using the PureLink 96
genomic DNA kit K182104 (Invitrogen, United Kingdom). For the training
sample, genomic DNA was extracted using OraGene OG-500 (DNA
Genotek, Canada).
Genotyping was done in two batches. Batch 1 was genotyped on an

Affymetrix Genome-Wide Human SNP Array 6.0. Liftover to human
reference genome version hg19 was performed using liftOverPlink [Scott
Ritchie: https://github.com/sritchie73/liftOverPlink]. Batch 2 was genotyped

on an Illumina Infinium OmniExpressExome-8 v1.6 SNP array by SciLifeLab
at Uppsala University.
After genotyping, quality control for individuals and markers was

performed on both batches using the R package plinkQC [Meyer HV (2018)
plinkQC: Genotype quality control in genetic association studies. https://
doi.org/10.5281/zenodo.3373798] with PLINK v1.9b658. This procedure also
controlled for population stratification, genotyping chip, and batch type. In
batch 1, there were 76 individuals and 424,323 variants that passed QC. In
batch 2, that was true for 250 people and 543,103 variants. After quality
control, we performed imputation of the remaining SNPs with IMPUTE2
v2.3.259 using the 1000 Genome Project Phase 3 reference panel, at a
window size of 5,000,000 bp, which yielded high concordance (Batch 1:
97.7%, Batch 2: 98.1%). Markers were filtered for existing RSIDs, and both
datasets overlapped in 17,331,954 SNPs.

Creating polygenic scores
We created polygenic scores for cognitive performance (here called
“cogPGS”) for each participant using PRSice-260. This was calculated by the
sum of effect sizes of thousands of SNPs (weighted by how many of the
effect alleles were present in each individual) that were discovered by a
large genome-wide association study on educational attainment, mathe-
matical ability, and general cognitive ability22. That study has available all
effects sizes and p values of their SNPs on the website of the Social Science
Genetics Association Consortium (https://www.thessgac.org/data).
We used the data available from a multi-trait analysis of GWAS61, which,

in our case, represents a joint polygenic score focused on a GWAS of
cognitive performance and complemented by information from a GWAS
on educational attainment, a GWAS on the highest-level math class
completed, and a GWAS on self-reported math ability (data called
MTAG_CP by the consortium). This joint analysis is ideal because pairwise
genetic correlations of these traits were high22. Furthermore, these GWAS
had hundreds of thousands of individuals, and such a large sample size
allows new studies to detect effects in samples of 100 individuals with 80%
statistical power22.
For the creation of cogPGS in our samples, we performed clumping and

pruning to remove nearby SNPs that are correlated with one another. The
clumping sliding window was 250 kb, with the LD clumping set to r2 > 0.25.
We included the weightings of all SNPs, regardless of their p value from the
GWAS (p= 1.00 threshold). At the end of this process, we had 5255 SNPs
included. We standardized the cogPGS to have a mean of zero and a
standard deviation of one.

Statistical analyses
To understand the effects on baseline levels of WM, we created a general
linear model (here called “baseline WM model”) with baseline WM as the
outcome and the predictors: sample (developmental and training),
baseline age, gender, cogPGS. The model was: WMbaseline= Sample+
Agebaseline+ Gender+ cogPGS. Baseline WM was standardized sepa-
rately in each sample to have a mean of zero and a standard deviation
of one.
Our main goal in the study was to test the independent influence of

cogPGS on the change of WM. For that, we first subtracted baseline WM
from the follow-up WM in each sample and then separately standardized
them (mean of zero and standard deviation of 1) to obtain the variable WM
change. We then used a general linear model (here called “WM change
model”) with WM change as the outcome and the predictors: sample
(developmental and training), baseline age, gender, cogPGS, age x sample,
cogPGS x sample. The model was: WMchange= Sample + Agebaseline+
Gender+ cogPGS+ cogPGS*Sample+ Agebaseline*Sample. For all analyses,
we used univariate general linear models in SPSS version 26.

Reporting Summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request.
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